Journal of Science Engineering Technology and Management Science

Volume 02, Issue 06, June 2025

Www.jsetms.com

DOI:10.63590/jsetms.2025.v02.i06.334-343

A STUDY ON LIFE INSURANCE OF KOTAK MAHINDRA BANK

G .Pavani*, M.Rajeshwar Reddy**, R.Gowthami***

* Department of MBA, Samskruthi College Of Engineering And Technology,

Hyderabad, Telangana, India.

Corresponding Author Email: psr2628@gmail.com

**Department Of Humanities & Sciences Mathematics, Samskruthi College Of Engineering And Technology, Hyderabad, Telangana, India.

Email: mrajesh3424@gmail.com

Hyderabad, Telangana, India. Email: routhugowthami4@gmail.com

To Cite this Article

G .Pavani, M.Rajeshwar Reddy, R.Gowthami, "A Study On Life Insurance Of Kotak Mahindra Bank", Journal of Science Engineering Technology and Management Science, Vol. 02, Issue 06, July 2025,pp: 334-343, DOI: http://doi.org/10.63590/jsetms.2025.v02.i06.pp334-343

ABSTRACT

The life insurance sector in India is undergoing rapid digital transformation, with institutions like Kotak Mahindra Bank integrating advanced technologies to improve customer experience, risk assessment, and product personalization. This study presents an AI, Machine Learning (ML), and Deep Learning (DL)-based analytical exploration of Kotak Mahindra's life insurance offerings, focusing on how data-driven strategies can optimize policy performance, customer acquisition, and satisfaction. Using a combination of historical policyholder data, claim records, and customer feedback, the study employs ML algorithms such as Random Forest, Logistic Regression, and K-Means Clustering to predict policy renewal behavior, assess risk levels, and segment customers based on demographics and buying behavior. Natural Language Processing (NLP) is used to analyze unstructured data such as customer reviews and support interactions, revealing key emotional drivers influencing insurance purchases. LSTM networks and other deep learning models are utilized to forecast claim patterns, retention trends, and customer lifetime value. The results indicate that AI-powered approaches significantly enhance decision-making in

^{***} Department of MBA, Samskruthi College Of Engineering And Technology,

life insurance services. Predictive analytics help reduce churn, optimize underwriting processes, and recommend personalized insurance plans. This study demonstrates that by leveraging intelligent systems, Kotak Mahindra Bank can deliver smarter, more responsive, and customer-centric life insurance solutions in an increasingly competitive financial landscape.

This is an open access article under the creative commons license https://creativecommons.org/licenses/by-nc-nd/4.0/

@ ⊕ ⑤ @ CC BY-NC-ND 4.0

I.INTRODUCTION

In the era of digital transformation, the insurance industry is shifting from traditional, agent-driven models to more personalized, technology-enabled services. Among the leading players driving this change is Kotak Mahindra Bank, whose life insurance division has been increasingly leveraging Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) to enhance policy delivery, customer engagement, and risk management. Life insurance is no longer viewed simply as a financial product but as a dataintensive, behavior-driven service that must adapt to the evolving needs and expectations of digitally savvy customers.AI and ML have empowered insurance providers to streamline operations by predicting customer needs, underwriting, automating detecting fraudulent claims, and personalizing policy recommendations. For a bank like Kotak Mahindra, with access to both banking and insurance customer data,

the integration of these technologies presents a unique opportunity to unify insights across verticals and develop more effective, targeted life insurance solutions. For example, ML models can analyze a customer's spending behavior, income patterns, and life stage to recommend an ideal insurance plan, while DL models can forecast lapse probability or claim risk based on historical trends. This study aims to explore how Kotak Mahindra Bank can use these intelligent systems to gain a competitive edge in its life insurance business. By analysing structured data (e.g., policy details, premium payments, demographic data) and unstructured data (e.g., feedback, queries, complaints), the research investigates how AI-powered analytics can improve customer satisfaction, policy performance, and business profitability. The study also highlights how AI and DL can help the bank move from reactive customer

service to proactive, personalized life insurance solutions.

Definition:

Life Insurance is a financial agreement between an individual (policyholder) and an insurance provider, wherein the insurer promises to pay a designated sum to the nominee upon the death of the insured or after a set period (in case of endowment or maturity plans). In return, the policyholder pays regular premiums. Life insurance is a key component of financial planning, offering both protection and long-term savings.Life Insurance Products of Kotak Mahindra Bank include various types such as Term Insurance, Endowment Plans, ULIPs (Unit Linked Insurance Plans), Retirement Plans, and Child Investment Plans. These products are designed to cater to different customer goals like income replacement, wealth creation, tax savings, and retirement security. Artificial Intelligence (AI) refers to the simulation of human intelligence by machines. In the context of life insurance, AI enables automated decision-making, real-time customer interaction, fraud detection, and smart underwriting based on vast datasets. Machine Learning (ML) is a subset of AI that uses statistical models to learn patterns from historical data and

make predictions or decisions. In life insurance, ML can predict policy lapse risk. customer churn. premium affordability, and claim probability. Deep Learning (DL) is a branch of ML that uses complex neural networks (e.g., CNNs, RNNs, LSTMs) to process large of data—especially volumes unstructured data such as images, documents, or text. DL in life insurance is used for document classification, medical record analysis, sentiment analysis, and forecasting claim patterns. Natural Language Processing (NLP), a part of DL, is used to analyze customer feedback, support tickets, and queries to extract insights about customer satisfaction, pain points, and emotional tone. This helps Kotak Mahindra Bank design more empathetic and usercentered life insurance services. By applying these technologies, Kotak Mahindra Bank can enhance understanding of policyholder needs, personalized life deliver insurance solutions, and proactively manage risks-leading to improved operational efficiency and customer trust.

Research Methodology:

This study employs a quantitative and technology-integrated research methodology to analyze the life insurance services of Kotak Mahindra

Bank using advanced AI, ML, and DL techniques. The objective is to examine how intelligent models can enhance customer insights, optimize policy improve offerings, and operational efficiency in the insurance domain. The process begins with the collection of structured and unstructured data from Kotak Mahindra's digital insurance **CRM** platform, databases, policy issuance logs, and customer feedback repositories. This includes demographic details of policyholders, premium payment history, policy type, claim status, call center interactions, and online reviews. The data is cleaned and preprocessed by removing duplicates, handling missing values, encoding categorical variables, and normalizing numerical fields. Unstructured text from customer queries and reviews prepared using Natural Language Processing (NLP) methods like tokenization, lemmatization, and sentiment tagging. Following Machine preprocessing, Learning models are applied for predictive analysis. Algorithms such as Logistic Regression, Decision Trees. and Random Forests are trained to predict customer churn, policy lapse probability, and claim likelihood. These models help identify at-risk policyholders and suggest retention strategies.

Additionally, K-Means Clustering is used to segment customers based on their purchasing behavior, financial profile, and policy preferences, which targeted marketing supports and personalized plan recommendations. For deeper insights, Deep Learning models implemented. LSTM networks analyze time-series data such premium payment intervals and policy renewals to forecast future behavior. NLP-based models assess customer sentiment across support tickets and reviews to identify satisfaction levels and areas of dissatisfaction. This helps Kotak Mahindra design empathetic, feedback-driven services.

II.LITERATURE REVIEW

➤ · Ngai et al. (2009)

This study reviewed data mining techniques in customer relationship management (CRM) and found clustering and classification to be effective in personalizing financial services—key to customizing life insurance policies.

Kumar & Reinartz (2012)

Their book emphasizes the importance of data-driven CRM strategies in financial sectors, laying a foundation for AI-based

personalization in insurance product recommendations.

➤ Chaudhuri et al. (2019)

They explored machine learning techniques for predicting life insurance claim fraud. Models such as decision trees and support vector machines enhanced claim accuracy and reduced risk.

Fischer & Krauss (2018)

Used deep learning models (LSTM) in the financial domain to forecast time-dependent behaviors, supporting similar use in forecasting life insurance policy renewals.

Patel & Kotecha (2014)

Demonstrated the application of customer segmentation using K-Means clustering in the insurance industry to identify target groups based on premium affordability and coverage needs.

> Zhou & Zhang (2017)

Studied sentiment analysis using deep learning to understand user opinions in financial services, a technique useful for analyzing feedback on Kotak Mahindra's insurance products.

➤ Wang et al. (2020)

Their work explored AI-based

pricing models for life insurance policies, allowing insurers to tailor premiums dynamically based on risk assessment.

➤ Gupta & Aggarwal (2021)

Investigated the use of Random Forest and XGBoost to predict life insurance sales success based on socio-economic and demographic data.

➤ Bhardwaj & Srivastava (2016)

Explored CRM in Indian insurance firms and emphasized the lack of personalization in product delivery, recommending AI as a solution.

➤ Alsharif & Al-Sammarraie (2022)

Proposed an AI-driven recommendation system for insurance that aligns customer history with suitable insurance products, enhancing customer satisfaction.

➤ Nelson et al. (2017)

Used LSTM-based neural networks to forecast behavior in finance. Their method is highly applicable to predicting customer engagement over time in insurance.

► Becker et al. (2009)

Demonstrated how CRM technologies positively affect

customer loyalty in the banking sector, which supports AI adoption in life insurance relationship management.

➤ Kotecha & Shah (2019)

Developed a fuzzy logic-based model integrated with AI to assist insurance underwriters in decision-making, reducing manual errors and delays.

Saxena et al. (2020)

Applied NLP techniques to policy documents and claim forms to automate document classification—reducing operational overhead in life insurance processing.

Kotak Life Insurance Annual Reports (2021–2023)

These official reports highlight the bank's ongoing efforts to digitally transform its insurance operations using AI-powered analytics, chatbots, and robo-advisory systems.

III.DATA ANALYSIS AND INTERPRETATION

INTERPRETATION:

The integration of AI, ML, and DL into the life insurance services of Kotak Mahindra Bank reveals significant insights into customer behavior, policy performance, and operational bottlenecks. By analyzing structured data such as customer demographics, premium payment history, policy type, and claim status, and combining it with unstructured data from customer feedback and support logs. the studyuncovers key patterns that can enhance both product design and service delivery. The application of machine learning algorithms such as Random Forest and Logistic Regression helped identify high-risk customers likely to lapse or discontinue their policies. These models also predicted the probability of claim submission and early cancellation, allowing the bank to deploy timely interventions like personalized communication or premium flexibility offers. Clustering techniques showed that different customer segments have distinct preferences: younger policyholders preferred term plans with digital onboarding, while older customers leaned toward traditional endowment retirement-focused or products.

INTERPRETATION:

Deep Learning techniques, particularly LSTM models, revealed seasonal patterns in policy purchases, with spikes occurring during financial year-end and tax-saving months. These insights allow the bank to time promotional campaigns

more effectively. Additionally, NLPbased sentiment analysis of customer support interactions highlighted trust issues during claim settlement and about policy confusion terms suggesting a need for clearer, AI-driven policy explanation tools like chatbots and FAQs.Overall, smart interpretation confirms that data-driven models not only enhance prediction and personalization but also improve the efficiency, transparency, and customer experience in life insurance. These insights validate the role of intelligent systems in supporting Kotak Mahindra Bank's strategic goal of delivering customer-centric insurance solutions while minimizing risks and improving operational performance.

IV.FINDINGS

The AI-, ML-, and DL-driven analysis of life insurance services at Kotak Mahindra Bank led to several important findings that can be used to enhance both operational efficiency and customer experience.

Firstly, the application of machine learning algorithms demonstrated strong accuracy in predicting customer behaviors, such as policy lapsation, claim filing likelihood, and renewal tendencies. These predictions help Kotak Mahindra identify at-risk policyholders early and take preventive

actions such offering flexible as premium plans, reminders, or loyalty rewards. This significantly improves customer retention and reduces revenue leakage.Secondly, customer segmentation through clustering techniques revealed that policyholders could be grouped into distinct segments based on age, income level, insurance goals, and digital literacy. For example, tech-savvy younger customers showed high interest in term insurance plans with online onboarding and mobile management features, while older customers preferred face-to-face consultations and investment-linked policies. This finding supports the development of targeted insurance marketing strategies and tailored communication plans. Thirdly, sentiment analysis of customer reviews and support interactions highlighted that trust and transparency are critical drivers of customer satisfaction. Many customers expressed confusion over claim procedures and policy exclusions. These insights suggest the need for AIpowered support tools—like interactive chatbots, automated policy explainers, and personalized onboarding journeys to improve education and build trust in insurance products. Additionally, time-series forecasting using LSTM networks revealed consistent seasonal demand peaks during the financial yearend (January to March) and festival seasons (October to December). This information enables the bank to launch and promotional timely campaigns offers for maximum impact. Lastly, the of these integration intelligent technologies led to faster decisionmaking, enhanced underwriting precision, and more efficient claims management. This not only reduces operational costs but also contributes to a more responsive, proactive insurance ecosystem that aligns with customer expectations in the digital era.

V.CONCLUSION

The study on life insurance services offered by Kotak Mahindra Bank, enhanced through the application of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL), highlights the immense potential of intelligent systems in transforming the traditional insurance landscape. From customer onboarding to policy issuance, and from risk prediction to claim processing, AI-based technologies introduce automation, personalization, and data-driven insights that improve both customer satisfaction and efficiency.The organizational implementation of machine learning models successfully enabled the bank to predict customer behavior such as policy

lapse, claim submission, and renewal intent. This allows Kotak Mahindra Bank to move from reactive servicing to proactive engagement—offering timely reminders, loyalty incentives, or bettermatched products. Moreover, learning models like LSTM proved valuable in forecasting seasonal demand and customer trends, making it possible to time campaigns and offers more effectively. These predictive tools ultimately support better decisionmaking for product design, pricing, and marketing strategies.Furthermore, Natural Language Processing (NLP) provided deeper visibility into customer sentiment by analyzing textual feedback, uncovering areas of improvement such clarity in policy terms, claim transparency, and support responsiveness. This kind of insight enables the bank to improve communication channels, offer smarter self-service tools like chatbots, and build a more trust-based relationship with policyholders.In conclusion, the of ΑI, ML, integration DL technologies empowers Kotak Mahindra Bank to offer more intelligent, customer-centric, and responsive life insurance solutions. By leveraging data and automation, the bank can not only improve operational performance but also gain a competitive edge in India's growing insurance market. This study reaffirms that intelligent analytics are no longer optional, but essential tools for delivering next-generation financial services.

VI.REFERENCES

- [1] Ngai, E. W. T., Xiu, L., & Chau, D. C. K. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. *Expert Systems with Applications*, 36(2), 2592–2602.
- [2] Kumar, V., & Reinartz, W. (2012). Customer Relationship Management: Concept, Strategy, and Tools. Springer.
- [3] Chaudhuri, S., Ghosh, S., & Malik, K. (2019). Predicting fraudulent claims in life insurance using supervised machine learning algorithms. *International Journal of Financial Studies*, 7(3), 45.
- [4] Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. *European Journal of Operational Research*, 270(2), 654–669.
- [5] Patel, J., & Kotecha, K. (2014). A data mining approach for customer segmentation in insurance companies.

- International Journal of Emerging Technologies, 5(2), 25–31.
- [6] Zhou, Z., & Zhang, Y. (2017). Sentiment analysis in financial texts using deep learning. *Journal of Financial Analytics*, 8(1), 12–20.
- [7] Wang, H., & Lee, C. (2020). Albased dynamic pricing model for life insurance premiums. *Journal of Risk and Insurance Analytics*, 67(1), 89–104.
- [8] Gupta, A., & Aggarwal, N. (2021). Machine learning-based sales forecasting for insurance agents. *Journal of Financial Services Marketing*, 26(1), 56–70.
- [9] Bhardwaj, S., & Srivastava, A. (2016). CRM strategies in Indian life insurance: A technology perspective. *Indian Journal of Marketing*, 46(3), 32–44.
- [10] Alsharif, M. H., & Al-Sammarraie, A. (2022). A recommendation engine for insurance products using AI. *Applied Artificial Intelligence Journal*, 36(4), 341–357.
- [11] Nelson, D. M., Pereira, A. C. M., & Oliveira, R. A. (2017). Stock market price movement prediction with LSTM neural networks. *International Joint*

Conference on Neural Networks (IJCNN).

[12] Becker, J. U., Greve, G., & Albers, S. (2009). The impact of technological CRM tools on customer satisfaction and retention. *Business Research*, 2(3), 221–242.

[13] Kotecha, K., & Shah, N. (2019). Fuzzy logic and AI integration for smart insurance underwriting. *International Journal of Computational Intelligence*, 15(1), 76–88.

[14] Saxena, R., Sharma, A., & Bansal, P. (2020). NLP in document classification for insurance processing. *International Journal of Data Science and Analytics*, 10(2), 111–123.

[15]https://joae.org/index.php/JOAE/article/view/206/176