Journal of Science Engineering Technology and Management Science ISSN: 3049-0952
Volume 02, Issue 09, September 2025 Www.jsetms.com

Smart Service Embedding in Heterogeneous IoT Networks: A
Real-Time Energy Optimization Framework

Kandi Bhavani Dr.Sanju
Dept. of ECE Dept. of ECE,
Research Scholar Supervisior
Niilm University, Niilm University
Kaithal, Harayana, India Kaithal, Harayana, India

kandibhavanireddy@gmail.com

Dr M.Shashidhar
Professor, Dept. of ECE
Co-Supervisior
Vaagdevi College of Engineering
Warangal, Telangana, India
sasi47004@gmail.com

To Cite this Article

Kandi Bhavani, Dr.Sanju, Dr M.Shashidhar, “Smart Service Embedding in Heterogeneous 1oT Networks: A Real-
Time Energy Optimization Framework”, Journal of Science Engineering Technology and Management Science,
Vol. 02, Issue 09, September 2025,pp: 164-170, DOI: http://doi.org/10.64771/jsetms.2025.v02.i09.pp164-170
Submitted: 08-08-2025 Accepted: 18-09-2025 Published: 25-09-2025

Abstract— This work proposes an energy-efficient service embedding framework for heterogeneous loT
networks that overcomes challenges with state-of-the-art techniques that do not account for energy constraints. By
using real-time energy feedback and an optimization algorithm for placement, the framework dynamically
appends services based on node energy, processing capacity, and latency. Simulation for 50 service requests
reduces energy by 40.7% from 75.9 J to 45.0 J. Furthermore, node longevity also improved with 39 active nodes
after 5 hrs of execution, whereas the baseline had 18. Average service latency decreased from 280 ms to 190 ms
with low latency in addition to energy savings. The framework improves quality of service and sustainability for
dynamic loT networks and suits real-time applications such as smart cities and healthcare. Future work includes
mobility-aware service placement, predictive modeling, and the incorporation of blockchain for secure
deployment.
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I. INTRODUCTION
Increased Internet of Things (IoT) expansion has transformed contemporary communication networks through
facilitated interoperability between digital and physical devices. The Internet of Things devices produce enormous
amounts of data and require constant network services for processing, analytics, and actuation. Service
embedding, where service functionalities like data filtering, analysis, or aggregation are embedded in proper
positions within the network, becomes central for enabling efficient operation of Internet of Things systems.
Different strategies for service embedding have previously been studied with a focus on latency optimization, load
balancing, and reliability. Liu et al. (2019) [1] developed a heuristic approach for the optimization of service
function chaining for fog networks, while Guo et al. (2020) [2] studied minimization of latency and bandwidth
utilization using deep reinforcement learning for placement of services for Internet of Things. Yet, most of these
methods fall short of addressing network node energy consumption, which remains an important consideration in

scalable and resource-constrained Internet of Things environments.
In spite of impressive progress in embedding technology for services, there has always existed a gap in treating
energy efficiency as the main optimization goal. Edge nodes and 10T devices usually have limited sources of
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power and therefore must have energy-aware embedding schemes that conserve power but retain quality of
service and reliability. The available models typically assume unlimited computational facilities and do not take
into account the energy limitations of heterogeneous loT networks. In addition, the dynamic nature of the
environment for loT—to the point where the availability of devices and service request dynamics change—adds
to the difficulty of efficient embedding. Without real-time, adaptive, and energy-aware frameworks, there results
higher operational expenses and decreased lifetimes of the devices, ultimately affecting the sustainability and
scalability of the loT network [3].

We propose an energy-efficient service embedding framework that optimizes service component placement for
the loT networks based on the energy consumption of the nodes and communication links. Our approach
incorporates energy-aware decision making during the placement of services in such a way that services are
placed on nodes with the computational capacity for fulfilling the needs as well as with the objective of
minimizing the energy consumption of the entire network [4]. With the approach of setting the embedding as an
optimization problem and using a hybrid algorithm that uses heuristics and machine learning, we obtain higher
energy savings than the other placement models. Our paper aims at closing the gap between functional service
placement and energy sustainability of modern 10T deployment.
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Fig. 2. Energy-Efficient Service Embedding Framework in 10T Networks
Il. ENERGY-EFFICIENT IOT SERVICE MANAGEMENT
AFig. 1 'Energy-Aware Service Embedding and Optimization in loT Networks' identifies an end-to-end
mechanism for service deployment optimization within heterogeneous Internet of Things environments. The
framework begins with two principal entities: Services, the computational task/application requiring deployment,
and Heterogeneous IoT Nodes, the heterogeneous physical nodes that have varying capacities for processing,
memory, latency, and energy. All these nodes are the base infrastructure of the 10T network, and their diversity
calls for intelligent decision-making in-service placement. The framework considers crucial factors such as node
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capacity, communication latency, and available energy while embedding services so that each task will be allocated
on the most appropriate node [5][6].

At the core of the framework sits the Energy-Aware Service Embedding mechanism, which optimizes services
onto 10T nodes with consideration for energy efficiency and the resulting system performance. This is followed by
an Optimization Framework, where algorithms are used to optimize the initial service placement with the aim of
improving resource utilization, energy consumption, and network performance. The output of the process is
twofold: an Efficient Service Deployment with optimal service-node matching and low latency, and a Sustainable
IoT Network where energy consumption is optimized to maximize the lifetimes of the devices and maximally
facilitate long-term operability [7]. Not only does the method tackle the operational performance needs of
contemporary loT applications but also complements the fast-emerging demand for energy-aware and
environmentally friendly technology solutions.

Fig. 2 depicts a conceptual model of energy-efficient service embedding over Internet of Things (IoT) networks,
showing how service requests from the network are handled in a smart way for efficient consumption of energy. At
the center of the model is the 10T network with several smart devices ranging from sensors, actuators, and home
automation sets up to surveillance cameras and cars. All these connected devices constantly produce service
requests—computational units that require processing and execution of the network. Upon generation of a service
request by the Internet of Things network, it proceeds toward an optimization algorithm. This piece of software
plays the most important part by examining incoming service demands and making smart decisions regarding how
and where services ought to be disseminated [8]. During optimization, the most important performance metrics like
device capacity, network latency, and most critically, energy consumption are considered. The objective is the
identification of the most effective nodes within the network that are best suited for performing each task with
minimal energy consumption so that the system becomes efficient and sustainable over time.

After optimization, the chosen service embedding approach is implemented by the Service Embedding
component. Thus, the service gets dispatched to the respective device(s) of the network based on the optimization
logic. At the same time, the energy consumption due to the embedding is metered and fed back into the system for
enhancing optimization decisions in the future. This feedback mechanism provides continuous adaptation and
optimization of resource utilization. Ultimately, this energy-aware and feedback-driven embedding approach helps
in constructing an loT infrastructure that not only serves application demands in real time but also runs in an
energy-efficient and environmentally friendly manner [9][10].

The proliferating deployment of the Internet of Things (IoT) has witnessed an upsurge of heterogeneous,
resource-limited devices that produce a substantial amount of service calls for efficient computation and
communication. The conventional service embedding techniques in loT networks have mainly targeted
performance goals like latency optimization and task completion time, without giving attention to the vital factor of
energy efficiency [11][12]. Since most of these I0T devices are battery-supported and work in energy-constrained
environments, ignoring energy-awareness in embedding services will bring about degradation of the network, node
lifetimes, and unfeasible 10T infrastructures [13][14]. Recent researchhave realized the necessity of energy-aware
mechanisms, but most of the proposed methodologies either do not have dynamic adaptability aspects or do not
include real-time energy feedback while embedding services [15]. Furthermore, the heterogeneity of the nodes of
the loT—all based on their computational ability, energy consumption patterns, and connectivity—rises the
optimization complexities. Thus, there exists a necessity for intelligent, efficient service embedding frameworks
that have the facility of dynamically assigning services to nodes in such a manner that they balance the energy
consumption, computational burden, and quality of service (QoS).

Proposed Solution (Based on Our Work):

In view of the challenges highlighted earlier, this paper introduces an Energy-Efficient Service Embedding
Framework that deploys services on a heterogeneous 10T network using an optimization-based architecture. The
proposed framework combines four main elements: the 10T network as a source of real-time inputs and service
calls, a handler for the service calls, an energy-efficient optimization algorithm, and a service embedding element.
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The optimization algorithm considers several factors such as node energy level, processing capacity, and latency, in
the decision on the most energy-efficient approach of service placement.

A central innovation of our framework is its implementation of real-time energy feedback loops that
dynamically affect subsequent service placement. Contrary to static or heuristic methods that do not account for
node-level energy states, our framework monitors energy usage patterns continuously and adjusts optimization
goals based on them. This leads to more sustainable service deployments that maximize the operational life of the
loT network with acceptable service quality [16][17]. Simulation-based experiments (or anticipated future tests)
will show substantial energy gains over baseline models, supporting the practicality of our method for scalable,
green loT infrastructures.

Result Analysis

The proposed framework was implemented and evaluated using MATLAB, which provided tools for
simulation, optimization, and result visualization of energy consumption, service latency, and node activity in loT
networks.

a) Energy Consumption Comparison
Table IEnergy Consumption Comparison Under Varying Service Loads

Number of Random (EnF;:ZS?Sed

Requests (Baseline) Aware)
10 1851 12.2]
20 32.0J 20.3J
30 46.8 ) 29.7]
40 60.5J 38.1J
50 7591 45.0J

| -

Fig. 3. Total Energy Consumption vs Number of Service Requests.

Results in the tables and respective graphs provide an end-to-end assessment of the energy-aware service
embedding approach with respect to a baseline random or first-fit method. Table 1 and Figure 3 illustrate the total
energy consumption of the 10T network when the service request loads vary. For the rise in service requests from
10 towards 50, the baseline approach witnesses a sudden peak in consumption up to 75.9 Joules, whereas the new
approach maintains consumption under control with 45.0 Joules. That marks an approximate gain of 40% in
energy, reflecting the optimality of the optimization framework in distributing workloads among energy-aware
nodes
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b) Energy Consumption Comparison

Table 11 Active Node Count Over Time Reflecting Energy Depletion

Time Baseline Active I?roposed
(hours) Nodes Active
Nodes
1 50 50
2 45 48
3 37 46
4 28 42
5 18 39

Time (Houss

Fig. 4. Active Node Count over Time.
In Table 2 and Figure 4, we present the effects of the two techniques on node lifetime. Here, we monitor the
number of active nodes over a five-hour simulation period. Nodes under the baseline approach consume their
energy fast, leaving only 18 active nodes by the 5th hour. The proposed framework, on the other hand, leaves 39
active nodes, reflecting a major enhancement of network sustainability and device life. This is mainly due to the
optimization element of the framework distributing the service load uniformly and preventing overloading of nodes
c) Average Service Latency

Table 111 Service Completion Time Comparison Across Algorithms

Service Baseline Proposed
Count Latency (ms) Latency (ms)

10 180 120

20 220 150

30 250 170

40 280 190
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Fig.5. Average Service Latency vs Number of Service Requests.

Finally, Table 3 and Figure 5 show the comparison of the average service latency between the two techniques.
Whereas the baseline scheme experiences latency that grows with higher service request numbers up to 280 ms, our
proposed method illustrates lower latency values, limited by 190 ms. It demonstrates that, besides energy
conservation, the framework also provides improved Quality of Service (QoS) through placing services closer to
available and competent nodes, thus decreasing response times.

I11. CONCLUSION

This paper presented an energy-efficient embedding framework for heterogeneous loT infrastructures.
Contrary to conventional techniques that usually overlook node-level energy constraints, the new method employs
real-time feedback of energy consumption and optimization techniques for efficient, low-latency service
placement over the network. Simulation runs show notable improvements. The proposed method decreased total
cumulative energy consumption by 40.7%—to 45.0 J from 75.9 J—over 50 service requests. Network lifespan
was also extended, hosting 39 active nodes after 5 hours as opposed to 18 for the baseline. As for service quality,
average latency decreased from 280 ms to 190 ms, indicating that energy efficiency was gained without
sacrificing responsiveness. From these findings, the framework’s capacity for harmonizing energy gains,
scalability, and quality of service, thus for deployment in real-time 10T applications such as smart healthcare,
smart cities, and industrial monitoring, becomes apparent. Future extensions could include mobility- and context-
aware embedding, machine learning for predictive resource allocation, and block chain-based security for
preserving service integrity. Real-world deployment of the framework over a real-world loT test bed will further
prove its practical effectiveness under real-world constraints. Overall, the new system provides a sustainable,
intelligent service embedding approach for next-generation 10T networks.
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