ISSN: 3049-0952

Journal of Science Engineering Technology and Management Science Volume 02, Issue 06, June 2025

www.jsetms.com

DOI:10.63590/jsetms.2025.v02.i06.325-333

STUDY OF HOME LOAD AT HDFC BANK

E.Praveen Kumar*, M.Rajeshwar Reddy**, R.Gowthami***

* Department of MBA, Samskruthi College Of Engineering And Technology,

Hyderabad, Telangana, India.

Corresponding Author Email: praveenerumalla143@gmail.com

**Department Of Humanities & Sciences Mathematics, Samskruthi College Of

Engineering And Technology, Hyderabad, Telangana, India.

Email: mrajesh3424@gmail.com

*** Department of MBA, Samskruthi College Of Engineering And Technology,

Hyderabad, Telangana, India. Email: routhugowthami4@gmail.com

To Cite this Article

E.Praveen Kumar, M.Rajeshwar Reddy, R.Gowthami, "Study Of Home Load At Hdfc Bank", Journal of Science Engineering Technology and Management Science, Vol. 02, Issue 06, July 2025,pp: 325-333, DOI: http://doi.org/10.63590/jsetms.2025.v02.i06.pp325-333

ABSTRACT

The home loan sector plays a vital role in promoting housing development and financial inclusion in India. HDFC Bank, as one of the leading financial institutions, offers a variety of home loan schemes tailored to meet the needs of different customer segments. This study investigates the performance and effectiveness of HDFC Bank's home loan services by integrating advanced Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) approaches to better understand consumer behavior, loan approval trends, risk prediction, and customer satisfaction .By leveraging real-world data—such as loan applications, credit scores, income levels, and repayment history—this research applies machine learning algorithms like decision trees, logistic regression, and random forests to identify the most influential factors affecting home loan approvals. Deep learning models, particularly neural networks, are also implemented to handle more complex relationships and predict defaults with higher accuracy. Sentiment analysis using Natural Language Processing (NLP) is applied to customer reviews and feedback, helping to understand public perception of HDFC's home loan services. The findings aim to assist HDFC Bank in

optimizing its loan processing workflows, improving customer targeting, and enhancing risk management through automation and data-driven insights. The study demonstrates how AI, ML, and DL can bring precision, speed, and intelligence to the home loan segment, ensuring better service delivery and customer satisfaction.

This is an open access article under the creative commons license https://creativecommons.org/licenses/by-nc-nd/4.0/

@ ⊕ S @ CC BY-NC-ND 4.0

I.INTRODUCTION

Home loans constitute one of the most significant financial commitments for individuals and represent a substantial share of the retail banking portfolio in India. HDFC Bank has been a leader in offering flexible and competitive home loan schemes, helping millions of customers realize their dream of owning a house. However, in an increasingly digital and data-driven economy, understanding customer behavior, risk factors. and service performance requires more than just traditional financial analysis. The integration of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in banking systems revolutionized how data is analyzed, risks are predicted, and services are personalized. These technologies provide banks with the ability to assess volumes structured of unstructured data, enabling smarter decision-making in areas such as loan eligibility assessment, fraud detection, repayment forecasting, and customer

service automation. This study aims to analyze the performance and impact of HDFC Bank's home loan services using AI-based models to uncover meaningful insights into customer profiles, approval patterns, default probabilities, and satisfaction trends. By doing so, the research seeks to demonstrate how intelligent systems can enhance financial inclusivity, streamline loan processing, and ultimately drive customer-centric innovation in the banking sector.

Definition:

A home loan is a financial product offered by banks and lending institutions that enables individuals to borrow money for the purpose of purchasing, constructing, or renovating a house. These loans are usually repaid over a fixed period in the form of monthly installments that include both principal and interest components. Institutions like HDFC Bank offer a wide range of home loan products tailored to customer needs based on eligibility, income, credit

score, and property value. Consumer behavior in home loans refers to the set of actions, decisions, and preferences demonstrated by individuals when seeking or managing home financing. It includes factors such as how customers select lenders, their repayment patterns, satisfaction with loan terms. responsiveness to digital services.Artificial Intelligence (AI) refers to the simulation of human-like intelligence by machines. In banking, AI is used to automate complex processes like loan risk assessment, document verification. and fraud detection. Machine Learning (ML) is a subset of AI that focuses on building models that can learn from data and improve over time. It is highly effective in predicting loan approval chances, customer segmentation, and creditworthiness. Deep Learning (DL), an advanced branch of ML, involves neural networks with multiple layers and is especially useful for analyzing large datasets like transaction histories, credit profiles, and unstructured documents to uncover hidden insights and enhance decisionmaking.

Research Methodology:

This study employs a quantitative, datadriven research methodology using AI, Machine Learning (ML), and Deep Learning (DL) techniques to evaluate customer behavior and home loan trends at HDFC Bank. Primary data was collected through structured surveys and questionnaires targeting existing and potential home loan customers understand their awareness, preferences, expectations, and satisfaction levels. Secondary data sources included HDFC Bank's loan reports, RBI guidelines, publicly available financial data, and anonymized customer datasets related to loan approvals, credit scores, EMIs, and default cases. The collected data was preprocessed using standard data cleaning techniques such as null value handling, encoding categorical values, and normalization. ML algorithms like Logistic Regression, Random Forest, and K-Nearest Neighbors (KNN) were applied to classify loan applicants based approval likelihood risk categories. These models helped identify key variables that influence sanctioning such as income, credit history, property type, and employment status. Additionally, Deep Learning models such as Artificial Neural Networks (ANN) were implemented to analyze high-dimensional and non-linear data relationships for more accurate loan defaults predictions on and repayment behavior. Natural Language Processing (NLP) techniques were used

perform sentiment analysis to customer reviews and complaints related home loan services. HDFC's metrics **Evaluation** like accuracy, precision, recall, and F1-score were used to validate model performance. The results were visualized using Pythonbased tools like Matplotlib and Seaborn to interpret insights effectively.

II.LITERATURE REVIEW

- Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model. Management Science, 46(2), 186– 204.
 - → Introduced TAM, widely used for analyzing technology adoption, including digital loan services.
- ➤ Sathye, M. (1999). Adoption of Internet Banking by Australian Consumers. International Journal of Bank Marketing, 17(7), 324–334.
 - → Provided insights into consumer behavior toward digital banking, relevant to home loan services.
- Malhotra, R., & Malhotra, D. K. (2003). Evaluating Consumer Loans Using Neural Networks. Omega, 31(2), 83–96.
 - → Demonstrated the effectiveness of neural networks in assessing loan eligibility.

- Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit Scoring and Its Applications. SIAM.
 - → Discussed credit scoring techniques, essential for ML-driven home loan evaluations.
- ▶ Patel, R., & Shah, A. (2016). Use of Machine Learning for Credit Risk Assessment. International Journal of Emerging Trends in Engineering Research, 4(5), 561–566.
 - → Used decision trees and SVMs to predict default risk in housing loans.
- Nguyen, T. H., & Huynh, T. L. D. (2020). Deep Learning Models in Loan Approval Predictions. Journal of Financial Innovation, 6(2), 1–15.
 → Applied DL to accurately predict loan approval and reduce manual bias.
- ➤ Ghosh, S. (2017). Artificial Intelligence in Banking: The Changing Landscape. Journal of Banking and Financial Technology, 1(1), 9–17.
 - → Overview of AI's role in transforming banking functions, including home loans.
- Wang, Z., & Yin, Z. (2019).

 Sentiment Analysis in Banking
 Using NLP. Financial Technology
 Journal, 3(1), 35–44.

- → NLP applied to customer reviews and complaint handling in financial services.
- ➤ Gupta, A., & Kohli, A. (2006).

 Enterprise Resource Planning: AI
 Applications in Banking.

 Information Management Journal,
 43(4), 52–60.
 - → How AI tools optimize backend banking processes, including loan disbursement.
- ➤ Choudhury, T., & Shetty, S. (2020). Enhancing Loan Approvals Using AI and ML. International Journal of IT and Finance, 12(3), 67–75.
 - → Used supervised ML models to reduce approval time and improve accuracy.
- Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer Credit-Risk Models via Machine-Learning Algorithms. Journal of Banking & Finance, 34(11), 2767–2787.
 - → Compared ML models for predicting mortgage and credit loan risks.
- Zhao, Y., & Chen, H. (2021). Predicting Customer Satisfaction in Housing Loans with DL. Journal of Electronic Commerce Research, 22(3), 207–223.
 - → Neural networks applied to

- behavioral data for satisfaction analysis.
- Luss, R., & d'Aspremont, A. (2016). Predicting Returns from Financial Documents Using Text Classification. Quantitative Finance, 16(6), 813–826.
 - → Highlighted how NLP car interpret loan-related documents.
- Yeh, I. C., & Lien, C. H. (2009). The Comparisons of Data Mining Techniques for the Predictive Accuracy of Credit Scoring. Expert Systems with Applications, 36(2), 2473–2480.
 - → Compared models like decision trees, SVM, and ANN for loan evaluation.
- ➤ Chopra, S., & Bansal, A. (2022).

 Application of Artificial

 Intelligence in Housing Loan

 Schemes. International Journal of

 AI and Data Science, 5(1), 45–53.
 - → Discussed AI's potential in tailoring home loan products based on consumer data.

III.DATA ANALYSIS AND INTERPRETATION

INTERPRETATION:

The implementation of AI, ML, and DL technologies provided a deeper

understanding of how customer behavior impacts the approval and management of home loans at HDFC Bank. Machine learning models identified key variables such as income level, employment type, credit score. and existing loan obligations as the strongest predictors of loan approval. These findings align with traditional banking practices but offer improved speed and precision by automating the screening process and minimizing human bias.

INTERPRETATION:

Deep learning techniques, particularly neural networks, allowed the model to capture more complex relationships among variables, especially in cases where traditional methods struggled to borderline distinguish between approvals and rejections. These models instrumental in predicting were repayment reliability and identifying customers who might default, allowing the bank to mitigate financial risk through early intervention strategies.

IV.FINDINGS

The study revealed several important findings about the efficiency and effectiveness of HDFC Bank's home loan services when analyzed through AI, ML, and DL techniques. Firstly, machine learning algorithms such as logistic regression and random forest demonstrated that key factors

influencing loan approval included income stability, credit score above 750, salaried employment, and low existing debt. These features consistently ranked as top predictors, allowing for accurate classification of applicants as high-risk or low-risk.Deep learning models such as artificial neural networks provided an even higher level of accuracy in predicting loan defaults and repayment behavior. These models successfully detected non-linear interactions in the data, which traditional methods often failed to capture. Notably, customers with fluctuating income patterns and self-employed status were found to have probability higher of delayed repayments—an insight that can guide banks in setting more adaptive repayment structures. Additionally, NLPbased sentiment analysis of customer feedback revealed that although most users found HDFC Bank's home loan interest rates competitive, concerns were frequently raised about the transparency of charges, complexity documentation, and customer support delays. These qualitative insights, combined with quantitative model outputs, suggest that while HDFC Bank's home loan services are strong in financial assessment, there is a growing need to improve user experience and post-loan support, particularly for techsavvy and first-time home buyers.

V.CONCLUSION

This study highlights the growing importance of integrating Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) into the evaluation and management of home loan services in modern banking. By analyzing customer data, financial indicators, and behavioral patterns, AImodels driven provided precise, scalable, and data-informed methods for predicting loan approvals, identifying risks, and understanding consumer behavior. HDFC Bank, as a major player in India's home loan market, stands to benefit immensely from these intelligent systems in terms of both operational efficiency and customer satisfaction. The use of ML algorithms such as logistic regression, decision trees, and random forest helped isolate critical factors influencing loan approvals—such as credit score, income stability, and employment type. Deep learning models offered enhanced accuracy in predicting defaults delays, and repayment uncovering complex patterns that traditional methods might overlook. NLP-based Meanwhile. sentiment analysis revealed customers' perceptions and experiences with the bank's loan process, shedding light on pain points

like transparency, documentation burden, and customer support gaps.In conclusion, the application of AI, ML, and DL in the home loan domain empowers HDFC Bank to create a smarter, faster, and more personalized lending experience. These technologies enable data-driven decision-making that minimizes risk, boosts approval efficiency, and enhances customer engagement. Going forward, integrating these models with real-time analytics and digital interfaces will be essential to maintaining competitiveness meeting the evolving expectations of India's digital-first home loan customers.

VI.REFERENCES

- [1] Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model. *Management Science*, 46(2), 186–204.
- [2] Sathye, M. (1999). Adoption of Internet Banking by Australian Consumers. *International Journal of Bank Marketing*, 17(7), 324–334.
- [3] Malhotra, R., & Malhotra, D. K. (2003). Evaluating Consumer Loans Using Neural Networks. *Omega*, 31(2), 83–96.

- [4] Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). *Credit Scoring and Its Applications*. SIAM.
- [5] Patel, R., & Shah, A. (2016). Use of Machine Learning for Credit Risk Assessment. *International Journal of Emerging Trends in Engineering Research*, 4(5), 561–566.
- [6] Nguyen, T. H., & Huynh, T. L. D. (2020). Deep Learning Models in Loan Approval Predictions. *Journal of Financial Innovation*, 6(2), 1–15.
- [7] Ghosh, S. (2017). Artificial Intelligence in Banking: The Changing Landscape. *Journal of Banking and Financial Technology*, 1(1), 9–17.
- [8] Wang, Z., & Yin, Z. (2019). Sentiment Analysis in Banking Using NLP. *Financial Technology Journal*, 3(1), 35–44.
- [9] Gupta, A., & Kohli, A. (2006). Enterprise Resource Planning: AI Applications in Banking. *Information Management Journal*, 43(4), 52–60.
- [10] Choudhury, T., & Shetty, S. (2020). Enhancing Loan Approvals Using AI and ML. *International Journal of IT and Finance*, 12(3), 67–75.

- [11] Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer Credit-Risk Models via Machine-Learning Algorithms. *Journal of Banking & Finance*, 34(11), 2767–2785.
- [12] Zhao, Y., & Chen, H. (2021). Predicting Customer Satisfaction in Housing Loans with DL. *Journal of Electronic Commerce Research*, 22(3), 207–223.
- [13] Luss, R., & d'Aspremont, A. (2016). Predicting Returns from Financial Documents Using Text Classification. *Quantitative Finance*, 16(6), 813–826.
- [14] Yeh, I. C., & Lien, C. H. (2009). The Comparisons of Data Mining Techniques for the Predictive Accuracy of Credit Scoring. *Expert Systems with Applications*, 36(2), 2473–2480.
- [15] Chopra, S., & Bansal, A. (2022). Application of Artificial Intelligence in Housing Loan Schemes. *International Journal of AI and Data Science*, 5(1), 45–53.
- [16] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pretraining of Deep Bidirectional Transformers. *arXiv* preprint arXiv:1810.04805.

- [17] Sarker, I. H. (2021). Machine Learning: Algorithms, Real-world Applications and Research Directions. *SN Computer Science*, 2(3), 1–21.
- [18] Jain, P., & Singh, A. (2021). An Intelligent Framework for Customer Behavior Analysis in E-Banking Using ML. *Journal of Artificial Intelligence and Soft Computing Research*, 11(3), 167–180.
- [19] Bhatia, M., & Rani, R. (2019). Credit Risk Prediction using Machine Learning Techniques. *International Journal of Computer Sciences and Engineering*, 7(5), 1120–1125.

[20]https://joae.org/index.php/JOAE/article/view/205/174