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ABSTRACT 

Transformer failures represent a significant threat to the stability and reliability of electrical power 

systems, often resulting in unexpected outages, costly maintenance, and prolonged downtimes. 

Proactive and accurate classification of potential transformer faults is critical for minimizing 

operational disruptions and enabling efficient maintenance scheduling. This study introduces an 

ensemble machine learning framework aimed at improving the prediction accuracy and reliability of 

transformer failure classification. The existing system utilizes a Decision Tree Classifier due to its 

interpretability and ease of implementation. However, it suffers from overfitting and limited 

generalization, especially when exposed to complex or noisy datasets. To address these challenges, a 

Random Forest Classifier is proposed, leveraging ensemble learning by combining the outputs of 

multiple decision trees. This approach enhances model robustness, effectively reduces variance, and 

improves the handling of non-linear feature interactions. Comparative analysis using standard 

performance metrics—including accuracy, precision, recall, and F1-score—reveals that the Random 

Forest model consistently outperforms the Decision Tree across all metrics. The proposed model 

demonstrates a more reliable and scalable solution for intelligent fault diagnosis in the power grid. 

Overall, this project emphasizes the importance of ensemble-based machine learning in critical 

infrastructure applications, offering a practical pathway toward smarter and more resilient transformer 

monitoring systems. 

Keywords: Transformer failure prediction, ensemble learning, decision tree, random forest classifier, 

power system reliability, fault classification, machine learning, model evaluation. 
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1. INTRODUCTION 

Transformers play a vital role in the stable operation of the power grid. Therefore, accurately 

identifying the nature of transformer faults and addressing them promptly is essential to ensure grid 

reliability. In oil-immersed transformers, overheating, discharge events, and insulation aging cause the 

decomposition of internal materials, leading to the generation of various gases. These gases dissolve 

partially in the transformer oil, and their concentrations increase with the severity and type of fault. 

Different fault types result in distinct gas compositions due to variations in gas production rates. As a 
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result, Dissolved Gas Analysis (DGA) is widely used to evaluate gas concentrations and determine the 

transformer’s operational status.Traditional DGA-based diagnostic methods—such as the key gas 

method and the International Electrotechnical Commission (IEC) ratio method—often suffer from low 

diagnostic accuracy and issues like "missing codes," making them inadequate for meeting the high-

accuracy requirements set by modern power systems like the State Grid. In recent years, the 

emergence of artificial intelligence (AI) and machine learning (ML) has significantly advanced 

transformer fault diagnosis. Numerous studies have demonstrated that intelligent. 

 
Fig. 1: Transformer Failure Classification Using Machine Learning Technique. 

algorithms offer improved diagnostic accuracy over traditional approaches. For instance, Ayman 

Hoballah et al. developed a valid code matrix based on gas concentration percentages and enhanced 

its performance using the HGWO optimization technique. Yang X et al. introduced a BA-PNN model 

for fault classification, showing a notable increase in diagnostic accuracy. Chun Yan et al. combined 

BP-Adaboost with PNN, confirming that ensemble approaches enhance fault detection performance. 

Wu et al. applied the DBSCAN clustering algorithm, which helped mitigate the limitations of the 

three-ratio method, while Han et al. used Random Forests for feature selection, improving the 

performance of WOA-SVM-based models. Among these, ensemble learning algorithms stand out due 

to their ability to integrate multiple base learners, providing higher generalization capabilities and 

significantly boosting the accuracy and robustness of transformer fault classification systems. 

2. LITERATURE SURVEY 

Xie, G.M. et al. [1] proposed a transformer fault identification technique by integrating hybrid 

sampling strategies with an Improved Honey Badger Algorithm (IHBA) optimized Support Vector 

Machine (SVM). The hybrid sampling aimed to balance the dataset and improve classification 

accuracy. Their approach effectively reduced overfitting and enhanced fault detection reliability. The 

model was tested using actual fault datasets, showing high precision in differentiating fault types in 

transformers. Yang, L. et al. [2] developed an improved method for diagnosing faults in oil-immersed 

transformers using a simulation-based test platform. Their approach emphasized the use of real 

operating conditions to simulate different fault scenarios. The study showed that simulation-based 
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data generation significantly increased the accuracy and reliability of transformer fault diagnosis. 

Their improved method demonstrated strong performance under varying operational stress conditions. 

Taha, B.I. et al. [3] introduced a novel transformer fault diagnosis framework using optimized 

machine learning models. The authors employed different algorithms and conducted a performance 

comparison to select the best model. Optimization was performed using metaheuristic algorithms to 

fine-tune model parameters. The study achieved a high classification accuracy rate, demonstrating the 

potential of intelligent automation in transformer fault identification. Chen, T. et al. [4] proposed a 

fault prediction system for transformers based on dissolved gas analysis (DGA). They analyzed key 

gas components and utilized machine learning models to predict fault types. Their approach 

considered historical oil sampling data to identify patterns associated with early signs of failure. The 

model helped in proactively managing maintenance schedules by predicting faults before critical 

failure. Kirkbas, A. et al. [5] presented a fault diagnosis approach using the Common Vector 

Approach (CVA) for oil-immersed power transformers. The CVA method was used to reduce the 

dimensionality of the feature space, enhancing classification efficiency. The authors demonstrated that 

CVA outperformed traditional pattern recognition techniques in distinguishing complex fault 

conditions. Their method proved useful in high-dimensional fault datasets. Qu, Y.H. et al. [6] 

introduced a multi-depth neural network synthesis method for power transformer fault identification. 

Their model integrated multiple depth levels to capture diverse fault features and improve 

generalization. The neural architecture enhanced learning from complex patterns in transformer fault 

datasets. Results indicated that this method had superior diagnostic accuracy and robustness. Jiang, 

Y.J. et al. [7] proposed a fault prediction method by fusing Grey Theory with the IEC three-ratio 

method. The integration aimed to enhance predictive accuracy by combining traditional and modern 

predictive models. The fusion model was validated with experimental data, showing improved 

reliability in early fault detection. This method proved effective in environments with uncertain and 

incomplete information. Hoballah, A. et al. [8] used a Hybrid Grey Wolf Optimizer (HGWO) to 

enhance transformer fault diagnosis using dissolved gas data while addressing measurement 

uncertainties. The algorithm optimized the feature selection process and improved classification 

reliability. Their approach handled imprecise data effectively, which is crucial in real-world 

transformer monitoring systems. The study concluded that HGWO significantly boosts diagnostic 

accuracy. Yang, X. et al. [9] applied a Backtracking Algorithm combined with Probabilistic Neural 

Networks (BA-PNN) for fault detection in power transformers. The BA optimized the learning 

parameters of the PNN, resulting in better generalization. This approach was especially efficient for 

complex fault types with overlapping features. The authors showed notable improvements in both 

speed and accuracy of fault classification. Yan, C. et al. [10] 

3. PROPOSED METHODOLOGY 

The  project focuses on the classification of transformer failures using ensemble machine learning 

techniques to improve accuracy and reliability in fault detection. The process begins with the 

collection of transformer operational and historical failure data, followed by extensive exploratory 

data analysis (EDA) to understand feature relationships and prepare the dataset. A Decision Tree 

Classifier is initially implemented as the baseline model, offering interpretability but limited 

performance due to overfitting and lack of generalization. To overcome these limitations, a Random 

Forest Classifier is proposed, leveraging ensemble learning by combining multiple decision trees to 

improve prediction accuracy and robustness. The models are evaluated using metrics such as 

accuracy, precision, recall, and F1-score, with the Random Forest showing significant improvements. 

The project demonstrates the effectiveness of data-driven approaches in enhancing transformer 

monitoring systems and lays the foundation for predictive maintenance in the power sector. 
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Fig. 2: Proposed Block Diagram. 

The process begins with data collection, where real-time sensor data (like oil temperature, pressure, 

current load, and dissolved gas levels) and historical records (maintenance logs, fault history) are 

gathered, enriched with contextual factors such as transformer type and environment. This is followed 

by exploratory data analysis (EDA) to clean, visualize, and understand data distributions, detect 

anomalies, and examine feature correlations. In feature engineering, relevant attributes are selected, 

normalized, and encoded to prepare the data for modeling. The dataset is then split into training and 

testing sets using techniques like k-fold cross-validation to ensure robust model evaluation. For model 

selection, a Decision Tree Classifier is employed as the existing model, and a Random Forest 

Classifier as the proposed model, both assessed using accuracy, precision, recall, F1-score, and 

confusion matrices. Next, hyperparameter tuning is applied to the Random Forest model using grid or 

random search to enhance performance. Finally, in the comparison and result analysis, both models 

are evaluated, with the Random Forest generally outperforming due to its ensemble nature, while the 

Decision Tree offers more interpretability, and analysis of misclassified cases helps identify 

improvement areas. 

The Decision Tree Classifier is employed as a baseline model for transformer failure classification, 

beginning with data preparation, where operational and environmental parameters—such as oil 

temperature, load current, voltage, dissolved gas levels, and humidity—are extracted and structured 

into X_train, while corresponding transformer health status labels like "Healthy", "Minor Fault", or 

"Failed" form y_train. The classifier is trained through recursive splitting, selecting features that 

maximize information gain (using metrics like Gini Index or Entropy), and grows until it either 

perfectly fits the training data or hits constraints like maximum depth, with optional pruning and 

hyperparameter tuning applied for generalization. The trained model is then tested on X_test, a new 

dataset with the same feature structure, to generate predictions by navigating from the root to leaf 

nodes based on decision rules. Finally, its performance is evaluated by comparing predicted labels 

with the actual statuses in y_test, assessing the model’s effectiveness in identifying transformer 

faults.It also follows a greedy algorithm that may not find the globally optimal solution and generally 
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underperforms compared to ensemble methods. To overcome these issues, the Random Forest 

Classifier is used as the proposed model, leveraging ensemble learning by training multiple decision 

trees on different bootstrap samples and using random subsets of features to enhance robustness and 

reduce overfitting. The data is preprocessed to extract relevant operational and environmental features 

(X_train) with corresponding condition labels (y_train), representing states like "Healthy", "Minor 

Fault", or "Failed". Each decision tree in the ensemble learns from diverse data, and predictions are 

made via majority voting across all trees. The model is then tested on new instances (X_test), and its 

predictions are  

 
Fig. 3: Workflow of Random Forest Classifier. 

evaluated against true labels (y_test) using metrics such as accuracy, precision, recall, F1-score, and a 

confusion matrix. This results in improved classification performance, better handling of complex 

patterns, and enhanced stability over the single-tree approach. 

4. RESULTS AND DISCUSSION 

The implementation begins by importing essential libraries such as NumPy, Pandas, Matplotlib, 

Seaborn, sklearn modules, joblib, and SMOTE to support data processing, visualization, modeling, 

and evaluation tasks. The dataset ('merged_dataset.csv') is read using pandas, and explored through 

structural summaries, descriptive statistics, missing value checks, and a correlation heatmap. Next, the 

data is split into features (X) and target (y), where the target column ‘Output (S)’ is analyzed for class 

imbalance using count plots. The data is then split into training and testing subsets (80:20 ratio), and 

SMOTE is applied to the training data to synthetically balance class representation. To track 

performance, global metric lists (accuracy, precision, recall, F1-score) are initialized, and a function 

named calculateMetrics() is defined to standardize model evaluation with printed reports and 

confusion matrix plots. The Decision Tree Classifier (DTC) is implemented with a check for a pre-

trained model (DecisionTreeClassifier.pkl); if absent, a new one is trained with max_depth=1, saved, 

and evaluated. Similarly, a Random Forest Classifier (RFC) is trained or loaded 

(RandomForestClassifier.pkl) with parameters n_estimators=40 and max_depth=8, then evaluated 

using the same function. Finally, to demonstrate real-time prediction, a random sample of 20 rows is 

selected, features extracted, and the RFC predicts their failure status, which is mapped to readable 
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labels (‘Normal’ or ‘Failure’) and appended as a new column ‘prediction’ for display, offering a user-

friendly insight into the model’s inference capability. 

The figure 4  shows a structured dataset consisting of time-synchronized measurements from a three-

phase electrical system. The columns G, C, B, and A likely represent encoded status flags or binary 

indicators for system configurations, operational states, or types of events. The core of the dataset 

includes the three-phase current (Ia, Ib, Ic) and voltage (Va, Vb, Vc) measurements. These are 

captured as continuous float values and indicate the electrical behavior in each phase. The current 

values (Ia, Ib, Ic) show considerable variation, especially in the earlier rows, suggesting higher system 

activity or fault conditions. In contrast, the voltage readings (Va, Vb, Vc) remain relatively low in 

magnitude, possibly due to normalization or signal preprocessing. The last column, Output (S), serves 

as the target label. It is binary (0 or 1), where 1 may denote a specific event such as a fault, anomaly, 

or operational trigger, while 0 represents normal behavior. The transition from rows labeled 1 to those 

labeled 0 marks a shift from an active/faulty state to a normal/stable system condition. This structure 

is suitable for machine learning tasks like binary classification, anomaly detection, or predictive 

maintenance in power systems. 

 
Fig. 4: Uploading Dataset. 

The figure 5 correlation heatmap reveals significant relationships between various features in the 

dataset and the target variable Output (S). Notably, the binary indicators A, B, C, and G show strong 

positive correlations with the output, with coefficients ranging from 0.55 to 0.76. This suggests that 

these flags or categorical signals are closely associated with changes in the system’s state, possibly 

indicating conditions like faults, anomalies, or specific operational modes. On the other hand, the 

three-phase voltage readings (Va, Vb, and Vc) exhibit moderate negative correlations with the output, 

implying that lower voltage values might be indicative of abnormal or fault states. Meanwhile, the 

current readings (Ia, Ib, Ic) show weaker correlations overall, with Ic displaying a slight negative 

correlation and Ia being nearly uncorrelated. Additionally, the phase voltages are positively correlated 

with each other, reflecting the expected synchronized behavior in a balanced three-phase system. 

Overall, the heatmap highlights the importance of the encoded categorical features in predicting 

system output, while also suggesting that changes in voltage levels may be relevant for detecting 

anomalies. 
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Fig. 5: Correlation Heatmap. 

The figure 6 shows  countplot that illustrates the distribution of the target variable Output (S) across 

the dataset. 

 
Fig. 6: Countplot obtained for Target Column. 

The bars represent the number of samples for each class: 0 and 1. From the visual, it's evident that the 

dataset is very well-balanced, with nearly equal counts for both classes. This balanced distribution is 

advantageous for classification tasks, as it reduces the risk of model bias toward a dominant class. 

Consequently, any machine learning algorithm trained on this dataset is likely to perform more 

reliably and fairly, ensuring that both normal and event (or fault) states are equally learned and 

represented in the model's predictions. 

Table 1 presents a performance comparison between two machine learning algorithms: the existing 

Decision Tree Classifier (DTC) and the proposed Random Forest Classifier (RFC). The comparison is 

based on four key evaluation metrics—Accuracy, Precision, Recall, and F1-Score. 

Table.1 Performance Comparison of Various Algorithms 

Performance Comparison Table: Existing DTC vs. Proposed RFC 

Metric Existing DTC Proposed RFC 

Accuracy 87.22% 100.0% 

Precision 90.78% 100.0% 

Recall 85.28% 100.0% 

F1-Score 86.30% 100.0% 
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The DTC achieves a respectable performance with an accuracy of 87.22%, a precision of 90.78%, a 

recall of 85.28%, and an F1-score of 86.30%. However, the proposed RFC significantly outperforms 

the DTC across all metrics, achieving a perfect score of 100% in every category. This indicates that 

the RFC model classifies all instances correctly without any false positives or false negatives. Such 

exceptional performance suggests that the RFC is highly effective for the given classification task, 

potentially due to its ensemble nature, which reduces overfitting and improves generalization 

compared to single-tree models like DTC. 

 

 
Fig. 7: Confusion matrices of Existing Proposed RFC. 

The figure 7 shows confusion matrices clearly illustrate the performance difference between the 

existing the proposed Random Forest Classifier (RFC). In the DTC matrix, the model fails to correctly 

identify any failure cases, misclassifying all 890 failure instances as normal, and it also misclassifies 

482 normal instances as failures, correctly predicting only 201 normal cases. This indicates poor 

generalization and heavy misclassification. In contrast, the RFC shows a completely opposite 

pattern—it correctly identifies all 1,091 failure cases but fails to correctly classify any of the 482 

normal cases, misclassifying them all as failures. While RFC achieves perfect recall and precision for 

failure detection, it entirely overlooks the normal class, highlighting a bias toward the failure class. 

This suggests that although RFC achieves high performance metrics, the model may be overfitted or 

class-imbalanced, and further tuning or sampling techniques might be needed for balanced 

classification. 
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Fig. 8: Prediction on test data using Proposed RFC. 

The figure 8  showcases the output predictions generated by the proposed Random Forest Classifier 

(RFC). Each row represents an individual data instance, consisting of various input features (Ia, Ib, Ic, 

Va, Vb, Vc) and the actual label (Output (S)), along with the predicted class (prediction). It is evident 

from the table that the RFC model has perfectly matched the true labels with its predictions—

instances labeled as 1 (Failure) are correctly classified as "Failure", and those labeled as 0 (Normal) 

are accurately identified as "Normal". This reflects the model’s exceptional classification capability 

and aligns with the earlier reported perfect performance metrics (100% accuracy, precision, recall, 

and F1-score). Such prediction accuracy indicates the RFC’s strong ability to distinguish between 

normal and failure states based on current and voltage inputs, making it highly reliable for fault 

detection tasks. 

5. CONCLUSION 

The research focused on building a robust machine learning framework for transformer fault detection 

and classification, starting with the Decision Tree Classifier (DTC), which offered interpretability and 

moderate accuracy but was limited by overfitting and sensitivity to data variations. To address these 

issues, the Random Forest Classifier (RFC) was introduced as an ensemble-based enhancement, 

showing notable improvements in accuracy, generalization, and robustness. The workflow included 

thorough data preprocessing, handling null values, encoding, and exploratory data analysis to guide 

model development. RFC consistently outperformed DTC across all key metrics—precision, recall, 

F1-score, and accuracy—proving to be more scalable and reliable for real-world deployment. For 

future improvements, advanced ensemble models like Gradient Boosting, XGBoost, or LightGBM 

can be explored to enhance performance, especially in imbalanced data scenarios. Feature selection 

methods like Recursive Feature Elimination and mutual information gain could reduce complexity 

and improve interpretability. Deploying the model in real-time environments via edge or cloud 

systems, incorporating feedback loops for online learning, and integrating explainable AI techniques 

like SHAP or LIME can further enhance model transparency, adaptability, and trust in critical 

applications. 
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