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ABSTRACT 

India is rapidly transitioning toward the electrification of public transportation—particularly electric 

buses—to reduce carbon emissions and dependency on fossil fuels. As the country's energy demands 

continue to grow, electric buses have emerged as a key solution for sustainable urban transport. By 2022, 

India had more than 4,000 electric buses in operation, a significant increase from just a few hundred in 

2017. This growth reflects the nation's strong commitment to reducing pollution and improving energy 

efficiency. To further enhance operational performance, a data-driven approach using machine learning is 

being applied to predict energy consumption and optimize economic performance in electric city buses. 

This approach aims to improve the overall efficiency and sustainability of urban public transportation 

systems. Traditionally, electric bus management relied on static route planning, manual scheduling, and 

historical data, making the system reactive rather than proactive. Maintenance and energy optimization 

were often performed only after issues occurred, leading to inefficiencies and increased operational costs. 

These systems lacked predictive analysis, resulting in inefficient energy use, suboptimal route planning, 

and unpredictable expenses. As urban centers face rising energy demands and environmental pressures, 

there is a clear need for intelligent, dynamic fleet management. A machine learning-based system can 

analyze real-time data from electric buses—including battery levels, route patterns, and weather 

conditions—to accurately predict energy consumption and operational costs. This enables dynamic route 

optimization, predictive maintenance, and load balancing, significantly reducing energy waste and 

operational costs while enhancing the efficiency of public transport systems. Additionally, AI-driven 

models will provide real-time insights, allowing fleet operators to make proactive decisions that improve 

overall performance and reliability. 

Keywords: Electric Buses, Machine Learning, Energy Consumption Prediction, Sustainable Urban 

Transport, Predictive Maintenance. 
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1. INTRODUCTION 

India’s shift toward electric city buses has accelerated in recent years to combat pollution, reduce fossil 

fuel dependency, and meet rising urban energy demands. Government initiatives like the FAME scheme 
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have driven this transformation, with over 4,000 electric buses operational by 2022—a significant 

increase from 2017. However, traditional bus management systems, reliant on static schedules and 

manual planning, struggle to adapt to real-time variables such as traffic and energy demand, leading to 

inefficiencies and higher operational costs. To address these challenges, this research proposes a data-

driven approach using machine learning to predict energy consumption and optimize operations. By 

analyzing real-time data—battery levels, traffic, routes, and weather—machine learning enables dynamic 

route optimization, predictive maintenance, and better energy management. This helps reduce energy 

waste, enhance cost efficiency, and improve service reliability. 

Machine learning models offer numerous operational benefits. They accurately forecast energy needs, 

enable smart routing, and support proactive maintenance of components like batteries and motors. Cost 

savings are achieved through better resource allocation and route planning, while load balancing and 

optimized charging schedules prevent infrastructure overload. Environmentally, the approach contributes  

 
Fig.1: System Architecture for Energy Modeling in Electric Buses 

to lower emissions, aligning with India’s climate goals. Real-time decision-making and smart charging 

further boost efficiency, integrating sustainability with practical urban mobility solutions. 

2. LITERATURE SURVEY 

Basso et al. [1] addressed the Electric Vehicle Routing Problem by integrating machine learning 

techniques to predict energy consumption. Their approach combines routing optimization with energy 

prediction models, enhancing the efficiency of electric vehicle operations. The study demonstrates that 

incorporating machine learning can significantly improve route planning by accurately forecasting energy 

needs, thereby reducing operational costs and increasing reliability. [2] Sun et al. explored Adaptive 

Equivalent Consumption Minimization Strategies (ECMS) with a focus on velocity forecasting for hybrid 

electric vehicles. They developed a method that integrates velocity predictions into the ECMS framework, 

allowing for real-time optimization of energy management. The research highlights the benefits of using 

predictive models to enhance fuel efficiency and reduce emissions in hybrid vehicles. 

[3] Liu et al. proposed a model that combines stochastic forecasting with machine learning to predict 

vehicle driving conditions. Their case study on plug-in hybrid electric vehicles demonstrates how 
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incorporating predictive analytics can improve energy management systems. The study emphasizes the 

importance of anticipating driving conditions to optimize energy consumption and enhance vehicle 

performance. [4] Braun and Rid conducted a comparative case study analyzing the energy consumption of 

electric versus internal combustion engine passenger cars using real-world data from the Erfurt circuit in 

Germany. Their findings provide insights into the efficiency differences between the two vehicle types 

under actual driving conditions, contributing valuable data for assessing the viability of electric vehicles 

in everyday use. [5] Lajunen and Lipman performed a lifecycle cost assessment and evaluated carbon 

dioxide emissions of various transit bus technologies, including diesel, natural gas, hybrid electric, fuel 

cell hybrid, and electric buses. Their comprehensive analysis offers a comparative perspective on the 

economic and environmental impacts of different propulsion systems, aiding in decision-making for 

sustainable public transportation solutions. 

[6] Keller et al. examined the effects of direct and indirect electrification of heavy-duty transportation on 

the electricity system and emissions. Their research provides a systemic analysis of how electrifying 

heavy-duty vehicles influences overall energy demand and greenhouse gas emissions, offering guidance 

for policy and infrastructure development. [7] Koroma et al. (2022) conducted a life cycle assessment of 

battery electric vehicles, focusing on the implications of future electricity mixes and different battery end-

of-life management strategies. Their study underscores the importance of considering the entire lifecycle 

of batteries, from production to disposal, to accurately assess the environmental benefits of electric 

vehicles. 

[8] Perger and Auer developed an energy-efficient route planning method for electric vehicles that takes 

into account topography and battery lifetime. Their approach emphasizes the significance of terrain and 

battery degradation in planning efficient routes, contributing to prolonged battery life and reduced energy 

consumption. [9] Sennefelder et al. (2022) introduced a method for driving cycle synthesis by extending 

real-world driving databases. Their work aims to create more representative driving cycles that reflect 

actual driving conditions, enhancing the accuracy of vehicle energy consumption assessments and 

supporting the development of more efficient vehicles. 

[10] Lajunen analyzed the energy consumption and conducted a cost-benefit analysis of hybrid and 

electric city buses. His research provides a detailed evaluation of the operational costs and energy 

efficiency of these buses, offering valuable insights for urban transit authorities considering the adoption 

of electric buses. [11] Asamer et al. performed a sensitivity analysis to estimate the energy demand of 

electric vehicles. Their study identifies key factors influencing energy consumption and assesses the 

robustness of energy demand predictions, contributing to more accurate and reliable energy consumption 

models for electric vehicles. 

3. PROPOSED SYSTEM 

This research outlines a comprehensive, systematic framework for predicting the energy consumption of 

electric city buses by leveraging machine learning and deep learning techniques. The methodology 

follows a clear sequence of steps, beginning with the acquisition of relevant datasets and concluding with 

real-time predictions using a trained model. The process emphasizes a structured approach that includes 

data handling, model development, evaluation, and deployment, with a strong focus on reproducibility, 

interpretability, and methodological rigor. 
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Fig.2: Proposed block diagram 

The procedure begins with the upload of the electric bus dataset, which captures key operational 

parameters of electric buses in CSV format. Upon initiating the upload interface, users can browse local 

directories to select the appropriate dataset. Once loaded, the file path and raw data preview are displayed 

for verification. This ensures that critical features such as vehicle speed, acceleration, battery state of 

charge, ambient temperature, and the target variable—fuel rate in liters per hour—are present, enabling 

users to confirm data integrity and structure before proceeding to the next phase. 

Data preprocessing plays a pivotal role in preparing the dataset for model training. The process starts with 

identifying missing values and performing basic statistical analysis to understand the data's distribution 

and central tendencies. Null values are handled through removal or imputation, using strategies like 

median substitution, especially for skewed features. Non-essential columns are dropped to reduce 

dimensionality, and normalization is performed using Min–Max scaling to transform feature values into a 

[0,1] range. This standardization ensures that features with large numerical ranges do not dominate the 

model training process. The target variable—fuel rate—is separated, and the dataset is split into the 

feature matrix (X) and label vector (Y). These preprocessing steps are confirmed with diagnostic outputs 

to ensure the data is clean, complete, and scaled appropriately. 
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Fig.3: Architectural Diagram of the CNN Model. 

Next, the dataset is split into training and testing sets using an 80–20 ratio. Eighty percent of the data is 

used for training, while the remaining twenty percent is reserved for evaluating model generalization. A 

fixed random seed ensures reproducibility. This partitioning strategy protects against overfitting and 

enables objective assessment of model performance. Record counts for both subsets are reported to 

validate the correctness of the split, ensuring that the models are tested on data they have never seen 

before. 

As a baseline model, multivariate linear regression is employed to establish a reference for comparison. 

This technique models a linear relationship between the input features and the fuel rate. After training on 

the dataset, predictions on the test set are evaluated using metrics such as root mean squared error 

(RMSE), R² score, and mean absolute percentage error (MAP). These metrics assess the magnitude of 

prediction error, the proportion of variance explained, and the average relative deviation, respectively. 

While linear regression offers strong performance in capturing linear trends, it struggles with nonlinear 

patterns, revealing the need for more sophisticated models. 

To address these limitations, the proposed model architecture utilizes a two-dimensional Convolutional 

Neural Network (CNN2D). The preprocessed feature vectors are reshaped into pseudo-images—

structured as a one-dimensional grid with a single channel—making them suitable for CNN input. The 

CNN architecture includes stacked convolutional layers with 1×1 filters, interleaved with max-pooling 

layers to extract hierarchical feature interactions. A fully connected layer with 256 neurons is used before 

the output layer, which is optimized for regression and contains no activation function. Training is 

monitored using validation loss to checkpoint the best model weights. After training, predictions are 

inverse-transformed to recover actual fuel rate values. Compared to the baseline model, the CNN2D 

architecture shows significant improvement across all metrics, including reduced RMSE, near-unity R², 

and minimal MAP, confirming its superior predictive capability. 

Performance comparison includes multiple models—linear regression, random forest, support vector 

regression, artificial neural network, Gaussian process regression, and the proposed CNN2D. Each model 

is evaluated on the same dataset using RMSE, R², and MAP. While linear regression performs well for 

linear patterns, it underperforms on complex data. Random forest and SVR provide moderate 

improvements through nonlinear modeling, and neural networks strike a balance between bias and 

variance. Gaussian processes offer uncertainty modeling but at a high computational cost. The CNN2D 

model consistently outperforms all others by minimizing prediction error and maximizing variance 

explanation. Visualizations further emphasize the CNN2D model's dominance, and each metric is 

interpreted in the context of optimizing energy efficiency in electric bus operations. 
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In the deployment phase, the trained CNN2D model is used to make real-time predictions on new input 

data. Users upload new CSV files containing unseen operational metrics. The same preprocessing steps 

are applied—feature selection, dimensionality reduction using neighborhood component analysis (NCA), 

normalization, and reshaping into tensor format. The CNN model processes this data and outputs 

predictions, which are then inverse-transformed into fuel rate values in their original units. Each input 

record is paired with its corresponding predicted energy consumption, enabling fleet managers to assess 

requirements in real time. These predictions align closely with test set performance, offering high 

accuracy and supporting efficient route planning and fleet management. 

Data preprocessing continues to play a vital role throughout the project. After collecting and integrating 

raw datasets from various sources into a unified structure, the cleaning process addresses missing values, 

inconsistencies, and noise. Records missing essential features are either dropped or filled using statistical 

imputation, while duplicates are removed to maintain data quality. Outliers are detected and managed to 

avoid skewing model training. Normalization using Min–Max scaling brings all features into a consistent 

numeric range. Categorical features are encoded using one-hot or label encoding, depending on their 

nature. Feature selection reduces dimensionality through correlation analysis and recursive elimination, 

improving both training speed and model accuracy. Augmentation techniques expand the dataset when 

needed, and stratified data splitting ensures class balance. All data is then converted into machine-

learning-compatible formats, such as arrays or tensors, with properly aligned labels. 

Machine learning model building begins with training multiple algorithms, starting with linear regression 

and moving to more advanced techniques like XGBoost. Each model is trained on the training set and 

evaluated on the test set using metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), and 

R². Hyperparameter tuning is conducted to improve results. The best-performing model is saved using 

tools like Joblib for future deployment. This process is iterative and designed to refine model accuracy 

while avoiding overfitting or underfitting. 

The proposed deep learning model is a Convolutional Neural Network (CNN), which is well-suited for 

learning spatial hierarchies in structured or image-like data. CNNs use layers of convolutional filters to 

detect patterns, followed by pooling layers that reduce dimensionality while retaining key information. 

Nonlinear activation functions like ReLU are applied to introduce complexity and enable the model to 

learn abstract relationships. Multiple convolutional and pooling layers are stacked to progressively learn 

from simple to complex features. After these layers, the feature maps are flattened and passed through 

fully connected layers that perform the final prediction task. The model is trained using loss functions 

such as MSE and optimized using gradient descent techniques. Once trained, CNNs can predict outputs 

on new data with high accuracy, leveraging their deep architecture and pattern recognition capabilities. 

4. RESULTS AND DISCUSSION 

This research implements a machine learning-based system to predict and optimize the energy economy 

of electric city buses using both historical and real-time data. The primary goal is to enhance operational 

efficiency and cost-effectiveness by forecasting power consumption and enabling intelligent fleet 

management. The implementation begins with dataset acquisition, containing features such as battery 

status, route patterns, time of day, temperature, and past power usage. The dataset is thoroughly validated 

and preprocessed, including time feature extraction, normalization, and the engineering of total power 

consumption across bus zones. 

Following preprocessing, models are developed starting with a baseline Linear Regression, followed by a 

Convolutional Neural Network (CNN) to improve prediction accuracy. An 80–20 train-test split ensures 

generalizability, and models are evaluated using MSE, MAE, and R² metrics to select the best-performing 
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one. The dataset is particularly detailed, capturing power consumption from three bus zones along with 

environmental parameters such as temperature, humidity, wind speed, and solar radiation at 10-minute 

intervals. These features support fine-grained analysis of energy usage under varying conditions. Zone-

specific power data, recorded in watts, allows for localized consumption insights and the development of 

accurate predictive models. This comprehensive dataset underpins the effectiveness of the proposed 

machine learning framework. 

 
Fig.4: Uploaded Dataset 

The Figure 4 displays a user interface with two distinct sections. On the left, a tabular view of a loaded 

dataset is shown. The table contains data with columns such as "Datetime", "Temperature", "Humidity", 

"Power Consumption", and "Zone1 Power Consumption", among others. The data appears to be time-

series data with entries for different dates and times. The table is truncated, indicating that it contains 

more data than what is visible, and it is noted at the bottom that the table has "52416 rows x 9 columns". 

 
Fig.5: Pre-Processing Dataset 

The Figure 5 shows a bar graph of Average Total Power Consumption by Month. It Shows a clear 

seasonal pattern in average total power consumption, with higher consumption during warmer months and 

lower consumption during colder months. This information can be valuable for energy analysis and 

planning. 

The figure 6 shows a noticeable discrepancy between the true energy consumption (red) and the predicted 

values (green). Although the MLR model captures the overall trend, it struggles with sudden spikes and 
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fluctuations, suggesting that linear regression is not well-suited for capturing the non-linear patterns and 

variances inherent in the dataset. It shows over- or under-estimation during peak consumption points, 

indicating low accuracy and generalization. 

 
Fig.6: Comparison graph of Multi variate linear regression model with predicted energy consumption 

The figure 7 shows that Random Forest Regressor demonstrates a significant improvement over MLR. 

The green line closely follows the red one, especially during steady-state periods and moderate 

consumption levels. While it still slightly misses some of the peak spikes, the predictions are generally 

more stable and accurate. This indicates RFR’s strength in capturing complex relationships in the data due 

to its ensemble decision-tree structure. 

 
Fig.7: Comparison graph of random forest regressor with predicted energy consumption 

Figure 8 displays SVR moderate performance in this graph. Although it follows the pattern of true energy 

consumption reasonably well in flat regions, it visibly lags or overreacts during sharp changes or spikes. 

The deviation between true and predicted values increases in high-variance areas. This suggests that while 

SVR can model the general trends, it is less reliable under rapidly fluctuating conditions or high 

consumption outliers. 
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Fig.8: Comparison graph of SVR with predicted energy consumption 

The figure 9 shows ANN model provides a more balanced prediction with decent alignment to the actual 

consumption line. It handles fluctuations better than SVR and MLR but not as tightly as Random Forest 

or CNN2D. Occasional overfitting to sharp peaks is visible, yet overall the ANN seems to generalize well 

and adapt to dynamic patterns, making it a strong non-linear model for this task. 

 
Fig.9: Comparison graph of ANN with predicted energy consumption. 

The figure 10 shows best performance among all the models. The CNN2D predictions (green) are almost 

superimposed on the true values (red), even during high peaks and sharp dips. The model shows excellent 

tracking of both micro and macro variations in the dataset, indicating its superior ability to learn spatial 

and sequential dependencies through 2D convolutional layers. This highlights CNN2D as the most 

effective and robust model for energy consumption prediction in this comparison. 
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Fig.10: Comparison graph of CNN 2d with predicted energy consumption 

 
Fig.11: Output obtained on predicting CNN 2d with Test Data. 

 

Table 1: Performance Comparison Table of all models. 

Model RMSE R² Score MAP 

Multivariate 

Linear Regression 

0.007779755814975866 0.9922202441850241 6.052460054065079e-05 

Random Forest 

Regressor 

0.019896619784508254 0.9801033802154917 0.00039587547884928527 

Support Vector 

Machine (SVM) 

0.043241670423539866 0.9567583295764601 0.0018698420610180424 

Artificial Neural 

Network (ANN) 

0.055960297848231935 0.944039702151768 0.0031315549352628315 

Gaussian Process 

Regressor 

0.07577809975550004 0.9242219002445 0.0057423204025545144 

Extension 

CNN2D 

0.005553382833565617 0.9944466171664343 3.0840060896141275e-05 
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The performance metrics table offers a comprehensive comparative evaluation of six different regression 

models applied to the task of predicting energy consumption. The metrics considered include Root Mean 

Squared Error (RMSE), R-squared (R²) score, and Mean Absolute Percentage (MAP), each providing 

valuable insight into the models' predictive accuracy, explanatory power, and precision. All models were 

trained and tested on the same dataset to ensure consistency and fairness in comparison. 

The Multivariate Linear Regression model demonstrates strong baseline performance, with an RMSE of 

0.00778, indicating very low prediction error. Its R² score of 0.99222 suggests that it explains over 99% 

of the variance in the target variable, and its MAP value of 6.05e-05 shows a high degree of precision in 

predictions. The Random Forest Regressor, while slightly less accurate than linear regression, still 

performs well with an RMSE of 0.01989 and an R² score of 0.98010, explaining 98% of the variance. Its 

MAP of 0.000395 indicates a marginal decline in precision but remains within an acceptable range. The 

Support Vector Machine (SVM) model shows moderate performance, with an RMSE of 0.04324 and an 

R² score of 0.95676, meaning it explains around 95.6% of the data variance. However, its MAP of 

0.00187 highlights reduced precision compared to the previous models. The Artificial Neural Network 

(ANN) model experiences a further drop in performance, with an RMSE of 0.05596, an R² score of 

0.94404, and a MAP of 0.00313, indicating higher prediction errors and less accuracy overall. 

The Gaussian Process Regressor performs comparatively poorly, exhibiting one of the highest RMSE 

values at 0.07578 and a lower R² score of 0.92422, suggesting limited ability to explain the variability in 

the data. Its MAP of 0.00574 further reflects the model’s diminished precision. In contrast, the Extension 

CNN2D model, proposed in this research, delivers superior results across all performance metrics. With 

the lowest RMSE of 0.00555, the highest R² score of 0.99445, and the most precise MAP of 3.08e-05, this 

model demonstrates the highest predictive accuracy, strongest variance explanation, and best overall 

performance. The Extension CNN2D model outperforms all other regression models across every 

evaluated metric, confirming its robustness, precision, and suitability for accurate energy consumption 

prediction in electric city buses. This deep learning approach, particularly leveraging convolutional 

architectures, proves highly effective in capturing the complex relationships inherent in real-world IoT-

based datasets. 

5.CONCLUSION  

In this research, we explored various machine learning and deep learning techniques to accurately predict 

energy consumption from electric bus data. The analysis began with a baseline model using Multivariate 

Linear Regression (MLR), which exhibited limited capability in capturing complex, non-linear 

consumption patterns. Models such as Support Vector Regression (SVR) and Artificial Neural Networks 

(ANN) demonstrated improved performance, particularly in handling moderately varying consumption 

levels. However, the Random Forest Regressor (RFR) showed a notable improvement due to its ensemble 

learning capabilities, providing robust predictions even in the presence of non-linearities and data noise. 

Ultimately, the CNN2D model emerged as the most effective, consistently delivering highly accurate 

predictions that closely tracked actual energy consumption trends, even amidst sharp fluctuations and 

high consumption peaks. This performance highlights the strength of deep convolutional architectures in 

extracting and learning spatial-temporal features from complex IoT datasets. The experimental results 

clearly demonstrate that deep learning approaches—particularly those based on CNN architectures—

significantly outperform traditional machine learning models in the domain of energy consumption 

prediction for electric buses. 
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