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ABSTRACT 

Injection attacks in APIs are a significant security concern, where malicious actors exploit 

vulnerabilities by inserting harmful code into API requests. These attacks can lead to unauthorized 

access, data breaches, and system compromises, ultimately affecting the integrity and confidentiality 

of applications. Historically, the detection of injection attacks in APIs has evolved alongside the 

increasing reliance on APIs in modern software development. Early detection methods primarily 

involved manual code reviews and pattern matching, which were often insufficient due to the 

complexity and variety of injection techniques. As APIs became more prevalent, the demand for 

automated and sophisticated detection mechanisms grew. Traditional systems for mitigating injection 

attacks have relied on input validation, parameterized queries, and the use of Web Application 

Firewalls (WAFs). These methods aim to prevent malicious inputs from being processed by the 

system. However, they frequently fall short in detecting complex or novel attack patterns, leaving 

systems vulnerable. The motivation for developing advanced detection systems arises from the 

limitations of traditional approaches. The increasing sophistication of attackers and the critical role of 

APIs in modern applications necessitate more robust and intelligent security measures. This research 

is driven by the need to enhance detection capabilities, reduce false positives, and adapt to emerging 

threats in real time. A core problem with traditional systems is their reactive nature and limited 

adaptability. They often require manual updates to recognize new attack vectors and struggle to detect 

obfuscated or zero-day attacks. Additionally, their reliance on predefined rules results in high false 

positive rates, where legitimate traffic is mistakenly flagged as malicious. To address these challenges, 

the proposed system leverages Bidirectional Recurrent Neural Networks (BRNNs) to detect injection 

attacks in APIs. BRNNs process input sequences in both forward and backward directions, capturing 

contextual information more effectively than unidirectional models. This approach enables the system 

to identify complex patterns associated with injection attacks, thereby improving detection accuracy 

and adaptability to evolving threats. 

Keywords: Injection Attacks, API Security, Bidirectional Recurrent Neural Networks (BRNNs), 
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1.INTRODUCTION 

This research focuses on detecting injection attacks in APIs using Bidirectional Recurrent Neural 

Networks (BiRNNs). Injection attacks—including SQL, XML, and JSON injections—pose significant 

threats to web applications and APIs, often resulting in data breaches and unauthorized access. By 

leveraging the capabilities of BiRNNs, the proposed system can effectively analyze sequential 

patterns in API requests, offering a powerful method for identifying and mitigating these attacks. The 

approach involves transforming API requests into TF-IDF vectors and utilizing deep learning to 

classify them as either normal or malicious. This ensures a higher level of security for modern web 

services and addresses the growing need for intelligent detection mechanisms in the digital landscape. 

The central challenge addressed by this research is the increasing sophistication of injection attacks 

targeting APIs, which frequently bypass traditional rule-based detection methods. Existing solutions 

often struggle to process large volumes of data or to adapt to the rapidly evolving techniques 

employed by attackers. Moreover, many conventional systems lack real-time processing capabilities, 

resulting in delays in detection and response. These shortcomings highlight the need for an advanced, 

scalable solution capable of detecting a wide range of injection attacks with high accuracy, speed, and 

adaptability. 

The motivation behind this study stems from the rapid rise in API usage for web applications and 

microservices, which has in turn made APIs a major target for cyberattacks. Traditional detection 

methods often rely on static rules or signatures that attackers can easily circumvent. To address these 

gaps, this research harnesses the power of deep learning—particularly BiRNNs—to develop a 

dynamic, adaptive model capable of accurately detecting injection attacks. Enhancing the security of 

APIs is not only crucial for protecting sensitive information but also for maintaining user trust and 

ensuring the stability of digital services across various industries. Traditional systems for injection 

attack detection, such as signature-based tools, intrusion detection systems (IDS), and heuristic-based 

methods, have shown significant limitations. These tools typically depend on predefined patterns and 

manual rule sets, making them ineffective against zero-day vulnerabilities and novel injection 

techniques. Additionally, their inability to process large-scale data or understand the contextual 

relationships within API requests often leads to high false positive and false negative rates. These 

weaknesses underscore the need for a more intelligent and context-aware approach to threat detection. 

 
Fig.1: SQL Injection Attack via API Endpoint. 

The objective of this research is to design and implement a robust, intelligent detection system for 

identifying injection attacks in API traffic using BiRNNs. By focusing on the sequential nature of API 

request data, the system aims to achieve high levels of precision, recall, and accuracy in 

distinguishing between benign and malicious activity. Another key aim is to ensure that the system 

can be deployed in real-world environments, maintaining effectiveness without imposing significant 

computational costs or latency, thus supporting both scalability and real-time application. 
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Given the growing reliance on APIs in various domains, securing them against injection attacks is 

more critical than ever. The dynamic nature of modern attack vectors renders traditional methods 

increasingly obsolete. There is a pressing need for advanced, adaptive solutions that can evolve with 

the threat landscape. This research directly addresses that need, offering a method that enhances the 

protection of sensitive data, ensures the integrity of systems, and fortifies the overall security posture 

of web-based services and applications. 

The applications of this research are wide-ranging and impactful. It can protect APIs in e-commerce 

platforms from SQL injections, safeguard sensitive information in healthcare systems, and prevent 

unauthorized access in financial services. Social media platforms, enterprise microservices, and IoT 

ecosystems can all benefit from enhanced injection attack detection. Additionally, the system can be 

deployed for real-time threat monitoring in cloud-based environments and used to secure educational 

platforms handling student and administrative data. The versatility and effectiveness of the proposed 

approach make it a valuable tool for strengthening API security across diverse sectors. 

2. LITERATURE SURVEY 

Most cyber-physical system (CPS) applications are safety-critical; misbehavior caused by random 

failures or cyber-attacks can considerably restrict their growth. Thus, it is important to protect CPS 

from being damaged in this way [1]. Current security solutions have been well-integrated into many 

networked systems including the use of middle boxes, such as antivirus protection, firewall, and 

intrusion detection systems (IDS). A firewall controls network traffic based on the source or 

destination address. It alters network traffic according to the firewall rules. Firewalls are also limited 

to their knowledge of the hosts receiving the content and the amount of state available. An IDS is a 

type of security tool that scans the system for suspicious activity, monitors the network traffic, and 

alerts the system or network administrator [2]. In this context, a number of frameworks and 

mechanisms have been suggested in recent papers. In the project, we have considered SQL injection 

attacks that target the HTTP/HTTPS protocol, which aim to pass through the web application firewall 

(WAF) and obtain an unauthorized access to proprietary data. SQL injection belongs to the injection 

family of web attacks, wherein an attacker inserts inputs into a system to execute malicious 

statements. The victim system is usually not ready to process this input, typically resulting in data 

leakage and/or granting of unauthorized access to the attacker; in this case, the attacker can access 

and/or modify the data, affecting all aspects of security, including confidentiality, integrity, and data 

availability [3].  

In an SQL injection, the attacker inserts an SQL statement into an exchange between a client and 

database server [3]. SQL (structured query language) is used to represent queries to database 

management systems (DBMSs). The maliciously injected SQL statement is designed to extract or 

modify data from the database server. A successful injection can result in authentication and bypass 

and changes to the database by inserting, modifying, and/or deleting data, causing data loss and/or 

destruction of the entire database. Furthermore, such an attack could overrun and execute commands 

on the hosted operating system, typically leading to more serious consequences [4]. Thus, SQL 

injection attacks present aserious threats to organizations. A variety of research has been undertaken to 

address this threat, presenting various artificial intelligence (AI)techniques for detection of SQL 

injection attacks using machine learning and deep learning models [5]. AI techniques to facilitate the 

detection of threats are usually implemented via learning from historical data representing an attack 

and/or normal data. Historical data are useful for learning, in order to recognize patterns of attacks, 

understanding detected traffic, and even predicting future attacks before they occur [6].  

In some research, injecting a code using ‘OR’ followed by a TRUE statement, such as 1 = 1 is called 

“tautology” [7]. Methods other than tautology can be used, such as when an attacker intentionally 

injects an incorrect query to force the database server to return a default error page, which might 

contain valuable information that could help an attacker to understand the database to form a more 
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advance attack [7]. The SQL syntax “UNION” can also be used to extract information, in addition to 

many other methods based on the same idea, of misusing SQL syntax to extract or even update the 

data in the targeted database. This is how SQL injection works; the question then becomes: how does 

one detect this type of attack using deep learning methods? Deep learning is a machine learning and 

artificial intelligence method. It can be used to support the detection of SQL injection attacks by 

training a classifier to achieve the ability to recognize and therefore detect an attack. The classifier is 

trained using deep learning models and can be used to classify new data, such as traffic or data in log 

files. If the classifier is passive, it will alert the administrator; if it is active, it will prevent data from 

passing to the database server. The classifier can be trained to recognize and detect SQL injection 

attacks using three different learning methods [8]. In the section, four published systematic reviews 

were considered. Newer systematic reviews typically include both recent and older studies in the area 

under investigation. Therefore, all of the papers we considered were relatively recent. The first was 

published in 2017 [9] and it covered previous primary studies on SQL injection attacks, techniques, 

and tools. 

 In [10], forty-six primary studies were analyzed related to SQL injection attacks, tools, and 

techniques, in addition to the impact of the attack. We adapted the same methodology as that used in 

[11] due to its comprehensiveness and because it achieves satisfying results, in addition, this research 

was similar to that in [12] in terms of objectives, ideas, and the area of research. Qiu et al. [13] 

provided a comprehensive review of using artificial intelligence in attacking and defending against 

security attacks, concentrating on the training and testing stages. In their study, they sorted 

technologies and applications of adversarial attacks in terms of natural language processing, 

cyberspace security, computer vision, and the physical world. Furthermore, the authors considered 

defense strategies in their research and proposed methods to deal with specific types of adversarial 

attack.  

Martins et al. [14] explored more than 15 papers that applied adversarial machine learning techniques 

used in intrusion and malware detection models. In their study, the authors summarized the most 

common adversarial attacks and defense mechanisms for intrusion and malware detection.  

Muslihi et al. [15] conducted a review of more than 14 studies published using deep learning methods 

to detect SQL injection attacks, including CNN, LSTM, DBN, MLP, and Bi-LSTM. They also 

provided a comparison of methods in terms of objectives, techniques, features, and datasets. 

Muhammad et al. [16] reviewed and analytically evaluated the methods and tools that are commonly 

used to detect and prevent SQL injection attacks, considering a total of 82 studies. Their review 

results showed that most researchers focused on proposing approaches to detect and mitigate SQL 

injection attacks (SQLIAs) rather than evaluating the effectiveness of existing SQLIA detection 

methods. 

3.PROPOSED SYSTEM 

The proposed system for detecting injection attacks in APIs employs advanced machine learning 

techniques, specifically Gated Recurrent Units (GRUs), to enhance detection accuracy and 

computational efficiency. The overall approach follows a structured pipeline, beginning with the 

collection of a comprehensive dataset consisting of both benign and malicious API requests. This 

dataset, stored in CSV format, is the foundation of the system, as the quality and diversity of the data 

significantly impact the performance of the machine learning model. Effective preprocessing is 

applied to the raw data to ensure consistency and suitability for analysis. This includes removing null 

values, performing label encoding to convert categorical classes into numerical representations, and 

applying TF-IDF vectorization to extract meaningful textual features from API requests while 

removing stop words to reduce noise. 

Once the data is preprocessed, it undergoes further transformation to prepare it for input into deep 

learning models. The data is shuffled to eliminate any ordering bias and then split into training and 
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testing sets, typically in an 80:20 ratio. Because recurrent neural networks (RNNs) like GRUs require 

3D input, the 2D TF-IDF vectors are reshaped to a compatible format where the number of time steps 

is set to one. This reshaping enables the GRU model to interpret each API request as a sequence, 

allowing it to detect both local and global patterns within the data. 

 
Fig.2: Proposed block diagram of detection of injection attacks in API’s. 

The model-building process begins with a Vanilla RNN used as a baseline, followed by the 

implementation of a GRU-based architecture for enhanced performance. GRUs are chosen due to 

their ability to address the limitations of traditional RNNs, such as the vanishing gradient problem, 

which hinders the learning of long-term dependencies. The GRU model comprises several key 

components, including a GRU layer that captures sequential dependencies in the API data using 

update and reset gates, a dense layer with ReLU activation to process the output from the GRU, and a 

dropout layer that helps prevent overfitting during training. The final output layer uses softmax 

activation to produce probability distributions across multiple classes, such as benign, SQL injection, 

cross-site scripting (XSS), and remote code execution (RCE). 

The model is trained using categorical cross-entropy as the loss function, optimized via the Adam 

optimizer for adaptive learning. The training process leverages Backpropagation Through Time 

(BPTT) to iteratively minimize error and fine-tune model weights. During testing, the trained GRU 

model is evaluated on unseen API request sequences to assess its generalization capabilities. The test 

data is preprocessed similarly to the training data to ensure consistency. For each input, the model 

predicts the probability of each class, selecting the one with the highest score as the final prediction. 

Evaluation metrics play a crucial role in validating the system’s effectiveness. The predicted labels are 

compared with actual labels from the test set to calculate performance indicators such as accuracy, 

precision, recall, and F1-score. These metrics provide insights into the model’s ability to correctly 

identify true attacks, minimize false positives, and maintain a balance between sensitivity and 

specificity. A confusion matrix is also generated to visualize the distribution of correct and incorrect 
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predictions across different attack types, helping identify areas where the model excels or needs 

improvement. 

 

 
Fig.3: Workflow of proposed GRU model. 

The GRU-based system offers several advantages for API injection detection. Its ability to learn 

sequential API behavior allows it to detect complex attacks that unfold across multiple calls. Unlike 

LSTMs, GRUs are more compact and require fewer computational resources while still capturing 

critical temporal dependencies. The model is resistant to the vanishing gradient problem, enabling it to 

retain relevant context over longer sequences. It also eliminates the need for manual feature 

engineering by learning temporal patterns directly from the raw input. Furthermore, the system 

supports real-time detection, making it suitable for deployment in environments that monitor live API 

traffic or logs. Compared to simple RNNs, GRUs demonstrate better generalization and are more 

effective in distinguishing nuanced attack patterns from legitimate API behavior, ultimately enhancing 

the security posture of modern web applications. 

4. RESULTS AND DISCUSSION 

The implementation of the proposed injection attack detection system begins with the integration of 

essential Python libraries. These include Tkinter for creating the graphical user interface (GUI), 

Pandas and NumPy for efficient data handling and numerical operations, and Matplotlib along with 

Seaborn for generating informative visualizations. For machine learning and deep learning tasks, 

libraries such as Keras and Scikit-learn are used, while NLTK handles natural language processing 
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components like stop word removal. Additionally, Pickle is employed to save and load model training 

history and weights, enabling efficient experimentation and reproducibility. 

The user interface is developed using Tkinter, with a main window that includes various interactive 

components such as buttons, labels, and text areas. These enable users to upload datasets, perform 

preprocessing, train models, visualize results, and make predictions through an intuitive GUI. Upon 

uploading a dataset in CSV format containing API request strings and their associated labels (e.g., 

Normal, SQL Injection, XML/JSON Injection), the system displays the data in a scrollable text box 

and plots a class distribution bar graph to provide immediate insights into the dataset’s balance. 

Data preprocessing involves converting the text labels into integer formats, such as 0 for normal 

requests and other values for specific injection types. Textual API requests are transformed into 

numerical vectors using the Term Frequency-Inverse Document Frequency (TF-IDF) technique. 

During this step, English stop words are removed to reduce noise and improve the quality of feature 

extraction. The resulting TF-IDF vectors are reshaped into a format suitable for input into recurrent 

neural network models and then shuffled and split into training and testing subsets, typically using an 

80:20 ratio. 

Model training begins with a Vanilla RNN implementation as the baseline model. The architecture 

includes an input layer aligned with the shape of the processed dataset, a dropout layer to mitigate 

overfitting, a dense hidden layer using the ReLU activation function, and a softmax output layer for 

multi-class classification. The model is compiled with a categorical cross-entropy loss function and 

the Adam optimizer and is either trained on the dataset or initialized with pre-saved weights for faster 

experimentation. 

Subsequent models, including LSTM and GRU, are implemented following a similar architecture, 

replacing the basic RNN layer with more advanced variants. LSTM is employed to better capture 

long-term dependencies in sequential data, while GRU offers a simplified yet efficient alternative to 

LSTM with fewer parameters and comparable performance. Both models use checkpointing to save 

weights during training and allow for easy reloading in future sessions. Once training is complete, all 

models are evaluated on the test dataset. Predictions are generated and compared against true labels to 

compute key performance metrics such as accuracy, precision, recall, and F1-score. Confusion 

matrices are also generated and visualized using Seaborn heatmaps to illustrate model performance in 

distinguishing between different attack types. These metrics are then aggregated and plotted in a 

comparative bar chart to clearly show the relative performance of Vanilla RNN, LSTM, and GRU, 

helping users identify the most effective architecture for detecting injection attacks. 

The system also supports real-time predictions on new data. Users can upload unseen datasets, which 

are preprocessed using the same TF-IDF vectorizer and reshaped for model compatibility. The pre-

trained GRU model is then used to classify each entry, and predictions are displayed in the GUI. 

Throughout the entire process, the GUI provides live feedback on the system’s activities, including 

dataset details, training progress, evaluation results, and prediction outputs through a scrollable text 

widget. Graphs and confusion matrices are shown in pop-up windows, offering a comprehensive and 

interactive user experience. The dataset used in this project is carefully structured to facilitate the 

detection of API-based injection attacks, particularly SQL injection and Cross-Site Scripting (XSS). It 

contains two primary columns: ‘Sentence’ and ‘Label.’ The 'Sentence' column consists of various 

textual inputs representing API calls or user queries, which may contain SQL code, HTML tags, or 

scripts designed to exploit system vulnerabilities. These inputs range from benign requests to 

malicious payloads crafted to bypass security measures and execute unauthorized actions. Examples 

of malicious entries include SQL payloads like " or pg_sleep(__TIME__) -- intended to manipulate 

database queries, and XSS vectors like <img onpointerenter=alert(1)>XSS</img> designed to execute 

JavaScript in user browsers. 
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The 'Label' column indicates whether each sentence is safe or malicious, typically using numerical 

values: 0 for benign inputs, 1 for SQL injections, and 2 for XSS attacks. This labeling scheme 

supports the classification task by serving as the ground truth for training and evaluating the model. 

The dataset is intentionally diverse, capturing a wide spectrum of attack vectors to ensure the 

robustness and generalization capability of the detection system. By combining clear sentence 

representations with accurate labeling, the dataset provides a strong foundation for training deep 

learning models to identify and mitigate injection attacks in real-world API environments. 

 Results Description 

 
Fig.4: Illustration of GUI interface showing data preprocessing. 

The Figure 4 shows the user interface of a desktop application designed for detecting injection attacks 

in APIs. The user uploads a dataset of API requests or code samples using the "Upload Injection 

Dataset" button. Presents a bar chart visualizing the distribution of different attack types and normal 

instances in the loaded dataset. This provides an overview of the dataset's composition. 

 
Fig.5: Illustration of GUI interface showing data splitting. 

The Figure 5 describes the data splitting process, a crucial step in machine learning model 

development. Let's break down what it means: This clearly indicates that the data has been divided 

into two sets: a training set and a testing set. This is standard practice to evaluate how well a machine 

learning model generalizes to unseen data. 

In this implementation, the dataset is divided into two subsets to facilitate effective model training and 

evaluation. A total of 80% of the dataset, comprising 37,957 data samples, is allocated for training. 

This training set is used to teach the machine learning model to recognize patterns and relationships 
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within the data, allowing it to learn the distinctions between benign and malicious API requests. The 

remaining 20% of the dataset, consisting of 9,490 samples, is reserved for testing. This testing set 

plays a crucial role in evaluating the model’s performance on unseen data, helping to determine its 

accuracy, robustness, and generalization capability. By assessing how well the model performs on the 

test set, developers can gain insight into its effectiveness in real-world scenarios and ensure it does not 

overfit to the training data 

.  

Fig.6: Confusion matrix obtained using RNN model. 

displays the performance evaluation of a machine learning model, specifically a "Vanilla RNN" 

(Recurrent Neural Network), likely used for a classification task. Let's break down the information 

presented: 

The performance of the Vanilla RNN model is evaluated using standard classification metrics and a 

confusion matrix. The model achieved an impressive overall accuracy of 95.35%, indicating that it 

correctly classified approximately 95.35% of all input instances in the dataset. The precision of the 

model stands at 97.17%, reflecting its ability to make highly accurate predictions, particularly for the 

"Normal" class—meaning that when the model predicts an instance as "Normal," it is correct in the 

majority of cases. The recall value is 93.59%, which shows the model’s effectiveness in identifying 

actual instances of each class, particularly its capability to recognize most of the "Normal" inputs. The 

F1-score, a balanced metric that combines both precision and recall, is 95.14%, signifying strong 

overall performance, especially in scenarios with imbalanced class distributions. 

The confusion matrix further breaks down the model’s predictive performance by showing how many 

instances of each true class were correctly or incorrectly classified. The matrix is structured with 

actual classes represented along the rows and predicted classes along the columns. The diagonal 

cells—representing correct classifications—highlight that the model correctly identified 5,778 

instances of "Normal," 1,900 instances of "SQL Injection," and 1,371 instances of "XML/JSON 

Injection." These diagonal values demonstrate the model's strong classification ability. However, the 

off-diagonal cells reveal some misclassifications. For instance, 399 instances of "SQL Injection" were 

incorrectly labeled as "Normal," and 11 "Normal" instances were misclassified as "SQL Injection." 

These errors, though relatively minimal, indicate areas where the model could be further fine-tuned to 

enhance its discrimination between closely related or overlapping input patterns. Overall, the 

performance metrics and confusion matrix collectively validate the Vanilla RNN model’s robustness 

in detecting injection attacks while also providing insight into specific areas for improvement. 
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Fig.7: Confusion matrix obtained using GRU model 

displays the performance evaluation of a machine learning model, specifically a "GRU" (Gated 

Recurrent Unit), likely used for a classification task. Let's break down the information presented: 

The performance of the GRU-based RNN model demonstrates a slight but meaningful improvement 

over the Vanilla RNN, showcasing its effectiveness in detecting injection attacks in API requests. The 

GRU model achieved an accuracy of 95.65%, indicating that it correctly classified approximately 

95.65% of all instances in the dataset. This marks a small but notable increase in performance 

compared to the Vanilla RNN. The precision of the GRU model is 97.50%, reflecting a high level of 

confidence in its predictions—when the model assigns a class label, it is highly likely to be correct. 

The recall value of 94.02% indicates the model’s strong ability to correctly identify a majority of 

actual class instances, which is crucial in a security context where missing a malicious input can have 

serious consequences. The F1-score, which balances both precision and recall, stands at 95.49%, 

slightly higher than the Vanilla RNN’s score, suggesting that the GRU model offers better overall 

classification reliability. 

The confusion matrix for the GRU model provides a detailed view of its predictive accuracy across 

specific classes. Along the diagonal, where correct classifications are recorded, the model correctly 

identified 5,783 instances of "Normal" API requests, 1,916 instances of "SQL Injection," and 1,378 

instances of "XML/JSON Injection." These results indicate the model’s strong capability to 

distinguish between benign and malicious traffic. However, the matrix also highlights several 

misclassifications. Notably, 381 instances of "SQL Injection" were incorrectly labeled as "Normal," 

which could pose a risk in a real-world scenario. Additionally, 10 "Normal" requests were 

misclassified as "SQL Injection," and 14 "XML/JSON Injection" instances were mislabeled as 

"Normal." Other minor errors include 2 "SQL Injection" samples predicted as "XML/JSON Injection" 

and 6 "Normal" instances mistakenly classified as "XML/JSON Injection." Despite these 

misclassifications, the GRU model demonstrates improved precision and recall over the Vanilla RNN, 

making it a more reliable and robust choice for detecting injection attacks in API environments. 
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Fig.8: Illustration of GUI interface showing predicted outcomes. 

The Figure 8 displays the results of an injection attack detection system on various test data inputs. 

The system analyzes each input, attempting to identify if it contains a potential injection attack and, if 

so, the type of attack. The "Predicted Injection" column shows the model's classification for each 

"Test Data" entry. A variety of inputs are tested, including script injections, form manipulations, SQL 

injection attempts, and others containing HTML elements or JavaScript code. The model classifies the 

inputs as either "Normal" (no attack detected), "SQL Injection," or "XML/JSON Injection," correctly 

identifying several SQL and XML/JSON injection attempts while also classifying benign inputs as 

"Normal." However, some potentially malicious inputs, like those with script tags or JavaScript alerts, 

are also classified as "Normal" or "XML/JSON Injection" when they might represent other types of 

attacks (e.g., Cross-Site Scripting - XSS), indicating potential areas for improvement in the model's 

detection capabilities. 

5. CONCLUSION  

The implementation of a Gated Recurrent Unit (GRU)-based model for detecting injection attacks in 

APIs marks a significant advancement in cybersecurity. By leveraging the GRU's ability to capture 

sequential dependencies, the model effectively identifies complex patterns associated with SQL 

injection and Cross-Site Scripting (XSS) attacks. A comprehensive dataset comprising both malicious 

and benign API requests enabled robust training and evaluation, resulting in a model capable of 

accurately distinguishing between normal and anomalous behaviors. This approach addresses the 

limitations of traditional detection methods by providing a more adaptive and intelligent solution to 

evolving cyber threats. The success of this model highlights the potential of integrating advanced deep 

learning techniques into cybersecurity frameworks, thereby enhancing the resilience of API-driven 

applications against sophisticated injection attacks. 
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