
Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

669 | Page

Journal of Science Engineering Technology and Management Science

Volume 02, Issue 08, August 2025 ISSN: 3049-0952

www.jsetms.com DOI: 10.64771/jsetms.2025.v02.i08.669-680

AI DRIVEN DETECTION OF INJECTION ATTACKS IN API’S USING

BIDIRECTIONAL RECURRENT NEURAL NETWORKS
Dr. A. Yashwanth Reddy

1
, Sri Harsha Dixit

2
, SV. Swathi

2
, N. Shashank

2
, K. Prashanth

2

1
Professor,

2
UG Student,

1,2
 Department of Computer Science and Engineering (Data Science),

1,2
Sree Dattha Group of Institutions, Sheriguda, Ibrahimpatnam, 501510, Telangana.

To Cite this Article

Dr. A. Yashwanth Reddy, Sri Harsha Dixit, SV. Swathi, N. Shashank, K. Prashanth, “Ai Driven

Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks”, Journal of

Science Engineering Technology and Management Science, Vol. 02, Issue 08, August 2025,pp: 669-

680, DOI: http://doi.org/10.64771/jsetms.2025.v02.i08.pp669-680

Submitted: 15-07-2025 Accepted: 21-08-2025 Published: 28-08-2025

ABSTRACT

Injection attacks in APIs are a significant security concern, where malicious actors exploit

vulnerabilities by inserting harmful code into API requests. These attacks can lead to unauthorized

access, data breaches, and system compromises, ultimately affecting the integrity and confidentiality

of applications. Historically, the detection of injection attacks in APIs has evolved alongside the

increasing reliance on APIs in modern software development. Early detection methods primarily

involved manual code reviews and pattern matching, which were often insufficient due to the

complexity and variety of injection techniques. As APIs became more prevalent, the demand for

automated and sophisticated detection mechanisms grew. Traditional systems for mitigating injection

attacks have relied on input validation, parameterized queries, and the use of Web Application

Firewalls (WAFs). These methods aim to prevent malicious inputs from being processed by the

system. However, they frequently fall short in detecting complex or novel attack patterns, leaving

systems vulnerable. The motivation for developing advanced detection systems arises from the

limitations of traditional approaches. The increasing sophistication of attackers and the critical role of

APIs in modern applications necessitate more robust and intelligent security measures. This research

is driven by the need to enhance detection capabilities, reduce false positives, and adapt to emerging

threats in real time. A core problem with traditional systems is their reactive nature and limited

adaptability. They often require manual updates to recognize new attack vectors and struggle to detect

obfuscated or zero-day attacks. Additionally, their reliance on predefined rules results in high false

positive rates, where legitimate traffic is mistakenly flagged as malicious. To address these challenges,

the proposed system leverages Bidirectional Recurrent Neural Networks (BRNNs) to detect injection

attacks in APIs. BRNNs process input sequences in both forward and backward directions, capturing

contextual information more effectively than unidirectional models. This approach enables the system

to identify complex patterns associated with injection attacks, thereby improving detection accuracy

and adaptability to evolving threats.

Keywords: Injection Attacks, API Security, Bidirectional Recurrent Neural Networks (BRNNs),

Detection Accuracy, Automated Threat Detection

This is an open access article under the creative commons license

https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.jsetms.com/
http://doi.org/10.64771/jsetms.2025.v02.i08.pp669-680
https://creativecommons.org/licenses/by-nc-nd/4.0/

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

670 | Page

1.INTRODUCTION

This research focuses on detecting injection attacks in APIs using Bidirectional Recurrent Neural

Networks (BiRNNs). Injection attacks—including SQL, XML, and JSON injections—pose significant

threats to web applications and APIs, often resulting in data breaches and unauthorized access. By

leveraging the capabilities of BiRNNs, the proposed system can effectively analyze sequential

patterns in API requests, offering a powerful method for identifying and mitigating these attacks. The

approach involves transforming API requests into TF-IDF vectors and utilizing deep learning to

classify them as either normal or malicious. This ensures a higher level of security for modern web

services and addresses the growing need for intelligent detection mechanisms in the digital landscape.

The central challenge addressed by this research is the increasing sophistication of injection attacks

targeting APIs, which frequently bypass traditional rule-based detection methods. Existing solutions

often struggle to process large volumes of data or to adapt to the rapidly evolving techniques

employed by attackers. Moreover, many conventional systems lack real-time processing capabilities,

resulting in delays in detection and response. These shortcomings highlight the need for an advanced,

scalable solution capable of detecting a wide range of injection attacks with high accuracy, speed, and

adaptability.

The motivation behind this study stems from the rapid rise in API usage for web applications and

microservices, which has in turn made APIs a major target for cyberattacks. Traditional detection

methods often rely on static rules or signatures that attackers can easily circumvent. To address these

gaps, this research harnesses the power of deep learning—particularly BiRNNs—to develop a

dynamic, adaptive model capable of accurately detecting injection attacks. Enhancing the security of

APIs is not only crucial for protecting sensitive information but also for maintaining user trust and

ensuring the stability of digital services across various industries. Traditional systems for injection

attack detection, such as signature-based tools, intrusion detection systems (IDS), and heuristic-based

methods, have shown significant limitations. These tools typically depend on predefined patterns and

manual rule sets, making them ineffective against zero-day vulnerabilities and novel injection

techniques. Additionally, their inability to process large-scale data or understand the contextual

relationships within API requests often leads to high false positive and false negative rates. These

weaknesses underscore the need for a more intelligent and context-aware approach to threat detection.

Fig.1: SQL Injection Attack via API Endpoint.

The objective of this research is to design and implement a robust, intelligent detection system for

identifying injection attacks in API traffic using BiRNNs. By focusing on the sequential nature of API

request data, the system aims to achieve high levels of precision, recall, and accuracy in

distinguishing between benign and malicious activity. Another key aim is to ensure that the system

can be deployed in real-world environments, maintaining effectiveness without imposing significant

computational costs or latency, thus supporting both scalability and real-time application.

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

671 | Page

Given the growing reliance on APIs in various domains, securing them against injection attacks is

more critical than ever. The dynamic nature of modern attack vectors renders traditional methods

increasingly obsolete. There is a pressing need for advanced, adaptive solutions that can evolve with

the threat landscape. This research directly addresses that need, offering a method that enhances the

protection of sensitive data, ensures the integrity of systems, and fortifies the overall security posture

of web-based services and applications.

The applications of this research are wide-ranging and impactful. It can protect APIs in e-commerce

platforms from SQL injections, safeguard sensitive information in healthcare systems, and prevent

unauthorized access in financial services. Social media platforms, enterprise microservices, and IoT

ecosystems can all benefit from enhanced injection attack detection. Additionally, the system can be

deployed for real-time threat monitoring in cloud-based environments and used to secure educational

platforms handling student and administrative data. The versatility and effectiveness of the proposed

approach make it a valuable tool for strengthening API security across diverse sectors.

2. LITERATURE SURVEY

Most cyber-physical system (CPS) applications are safety-critical; misbehavior caused by random

failures or cyber-attacks can considerably restrict their growth. Thus, it is important to protect CPS

from being damaged in this way [1]. Current security solutions have been well-integrated into many

networked systems including the use of middle boxes, such as antivirus protection, firewall, and

intrusion detection systems (IDS). A firewall controls network traffic based on the source or

destination address. It alters network traffic according to the firewall rules. Firewalls are also limited

to their knowledge of the hosts receiving the content and the amount of state available. An IDS is a

type of security tool that scans the system for suspicious activity, monitors the network traffic, and

alerts the system or network administrator [2]. In this context, a number of frameworks and

mechanisms have been suggested in recent papers. In the project, we have considered SQL injection

attacks that target the HTTP/HTTPS protocol, which aim to pass through the web application firewall

(WAF) and obtain an unauthorized access to proprietary data. SQL injection belongs to the injection

family of web attacks, wherein an attacker inserts inputs into a system to execute malicious

statements. The victim system is usually not ready to process this input, typically resulting in data

leakage and/or granting of unauthorized access to the attacker; in this case, the attacker can access

and/or modify the data, affecting all aspects of security, including confidentiality, integrity, and data

availability [3].

In an SQL injection, the attacker inserts an SQL statement into an exchange between a client and

database server [3]. SQL (structured query language) is used to represent queries to database

management systems (DBMSs). The maliciously injected SQL statement is designed to extract or

modify data from the database server. A successful injection can result in authentication and bypass

and changes to the database by inserting, modifying, and/or deleting data, causing data loss and/or

destruction of the entire database. Furthermore, such an attack could overrun and execute commands

on the hosted operating system, typically leading to more serious consequences [4]. Thus, SQL

injection attacks present aserious threats to organizations. A variety of research has been undertaken to

address this threat, presenting various artificial intelligence (AI)techniques for detection of SQL

injection attacks using machine learning and deep learning models [5]. AI techniques to facilitate the

detection of threats are usually implemented via learning from historical data representing an attack

and/or normal data. Historical data are useful for learning, in order to recognize patterns of attacks,

understanding detected traffic, and even predicting future attacks before they occur [6].

In some research, injecting a code using ‘OR’ followed by a TRUE statement, such as 1 = 1 is called

“tautology” [7]. Methods other than tautology can be used, such as when an attacker intentionally

injects an incorrect query to force the database server to return a default error page, which might

contain valuable information that could help an attacker to understand the database to form a more

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

672 | Page

advance attack [7]. The SQL syntax “UNION” can also be used to extract information, in addition to

many other methods based on the same idea, of misusing SQL syntax to extract or even update the

data in the targeted database. This is how SQL injection works; the question then becomes: how does

one detect this type of attack using deep learning methods? Deep learning is a machine learning and

artificial intelligence method. It can be used to support the detection of SQL injection attacks by

training a classifier to achieve the ability to recognize and therefore detect an attack. The classifier is

trained using deep learning models and can be used to classify new data, such as traffic or data in log

files. If the classifier is passive, it will alert the administrator; if it is active, it will prevent data from

passing to the database server. The classifier can be trained to recognize and detect SQL injection

attacks using three different learning methods [8]. In the section, four published systematic reviews

were considered. Newer systematic reviews typically include both recent and older studies in the area

under investigation. Therefore, all of the papers we considered were relatively recent. The first was

published in 2017 [9] and it covered previous primary studies on SQL injection attacks, techniques,

and tools.

 In [10], forty-six primary studies were analyzed related to SQL injection attacks, tools, and

techniques, in addition to the impact of the attack. We adapted the same methodology as that used in

[11] due to its comprehensiveness and because it achieves satisfying results, in addition, this research

was similar to that in [12] in terms of objectives, ideas, and the area of research. Qiu et al. [13]

provided a comprehensive review of using artificial intelligence in attacking and defending against

security attacks, concentrating on the training and testing stages. In their study, they sorted

technologies and applications of adversarial attacks in terms of natural language processing,

cyberspace security, computer vision, and the physical world. Furthermore, the authors considered

defense strategies in their research and proposed methods to deal with specific types of adversarial

attack.

Martins et al. [14] explored more than 15 papers that applied adversarial machine learning techniques

used in intrusion and malware detection models. In their study, the authors summarized the most

common adversarial attacks and defense mechanisms for intrusion and malware detection.

Muslihi et al. [15] conducted a review of more than 14 studies published using deep learning methods

to detect SQL injection attacks, including CNN, LSTM, DBN, MLP, and Bi-LSTM. They also

provided a comparison of methods in terms of objectives, techniques, features, and datasets.

Muhammad et al. [16] reviewed and analytically evaluated the methods and tools that are commonly

used to detect and prevent SQL injection attacks, considering a total of 82 studies. Their review

results showed that most researchers focused on proposing approaches to detect and mitigate SQL

injection attacks (SQLIAs) rather than evaluating the effectiveness of existing SQLIA detection

methods.

3.PROPOSED SYSTEM

The proposed system for detecting injection attacks in APIs employs advanced machine learning

techniques, specifically Gated Recurrent Units (GRUs), to enhance detection accuracy and

computational efficiency. The overall approach follows a structured pipeline, beginning with the

collection of a comprehensive dataset consisting of both benign and malicious API requests. This

dataset, stored in CSV format, is the foundation of the system, as the quality and diversity of the data

significantly impact the performance of the machine learning model. Effective preprocessing is

applied to the raw data to ensure consistency and suitability for analysis. This includes removing null

values, performing label encoding to convert categorical classes into numerical representations, and

applying TF-IDF vectorization to extract meaningful textual features from API requests while

removing stop words to reduce noise.

Once the data is preprocessed, it undergoes further transformation to prepare it for input into deep

learning models. The data is shuffled to eliminate any ordering bias and then split into training and

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

673 | Page

testing sets, typically in an 80:20 ratio. Because recurrent neural networks (RNNs) like GRUs require

3D input, the 2D TF-IDF vectors are reshaped to a compatible format where the number of time steps

is set to one. This reshaping enables the GRU model to interpret each API request as a sequence,

allowing it to detect both local and global patterns within the data.

Fig.2: Proposed block diagram of detection of injection attacks in API’s.

The model-building process begins with a Vanilla RNN used as a baseline, followed by the

implementation of a GRU-based architecture for enhanced performance. GRUs are chosen due to

their ability to address the limitations of traditional RNNs, such as the vanishing gradient problem,

which hinders the learning of long-term dependencies. The GRU model comprises several key

components, including a GRU layer that captures sequential dependencies in the API data using

update and reset gates, a dense layer with ReLU activation to process the output from the GRU, and a

dropout layer that helps prevent overfitting during training. The final output layer uses softmax

activation to produce probability distributions across multiple classes, such as benign, SQL injection,

cross-site scripting (XSS), and remote code execution (RCE).

The model is trained using categorical cross-entropy as the loss function, optimized via the Adam

optimizer for adaptive learning. The training process leverages Backpropagation Through Time

(BPTT) to iteratively minimize error and fine-tune model weights. During testing, the trained GRU

model is evaluated on unseen API request sequences to assess its generalization capabilities. The test

data is preprocessed similarly to the training data to ensure consistency. For each input, the model

predicts the probability of each class, selecting the one with the highest score as the final prediction.

Evaluation metrics play a crucial role in validating the system’s effectiveness. The predicted labels are

compared with actual labels from the test set to calculate performance indicators such as accuracy,

precision, recall, and F1-score. These metrics provide insights into the model’s ability to correctly

identify true attacks, minimize false positives, and maintain a balance between sensitivity and

specificity. A confusion matrix is also generated to visualize the distribution of correct and incorrect

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

674 | Page

predictions across different attack types, helping identify areas where the model excels or needs

improvement.

Fig.3: Workflow of proposed GRU model.

The GRU-based system offers several advantages for API injection detection. Its ability to learn

sequential API behavior allows it to detect complex attacks that unfold across multiple calls. Unlike

LSTMs, GRUs are more compact and require fewer computational resources while still capturing

critical temporal dependencies. The model is resistant to the vanishing gradient problem, enabling it to

retain relevant context over longer sequences. It also eliminates the need for manual feature

engineering by learning temporal patterns directly from the raw input. Furthermore, the system

supports real-time detection, making it suitable for deployment in environments that monitor live API

traffic or logs. Compared to simple RNNs, GRUs demonstrate better generalization and are more

effective in distinguishing nuanced attack patterns from legitimate API behavior, ultimately enhancing

the security posture of modern web applications.

4. RESULTS AND DISCUSSION

The implementation of the proposed injection attack detection system begins with the integration of

essential Python libraries. These include Tkinter for creating the graphical user interface (GUI),

Pandas and NumPy for efficient data handling and numerical operations, and Matplotlib along with

Seaborn for generating informative visualizations. For machine learning and deep learning tasks,

libraries such as Keras and Scikit-learn are used, while NLTK handles natural language processing

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

675 | Page

components like stop word removal. Additionally, Pickle is employed to save and load model training

history and weights, enabling efficient experimentation and reproducibility.

The user interface is developed using Tkinter, with a main window that includes various interactive

components such as buttons, labels, and text areas. These enable users to upload datasets, perform

preprocessing, train models, visualize results, and make predictions through an intuitive GUI. Upon

uploading a dataset in CSV format containing API request strings and their associated labels (e.g.,

Normal, SQL Injection, XML/JSON Injection), the system displays the data in a scrollable text box

and plots a class distribution bar graph to provide immediate insights into the dataset’s balance.

Data preprocessing involves converting the text labels into integer formats, such as 0 for normal

requests and other values for specific injection types. Textual API requests are transformed into

numerical vectors using the Term Frequency-Inverse Document Frequency (TF-IDF) technique.

During this step, English stop words are removed to reduce noise and improve the quality of feature

extraction. The resulting TF-IDF vectors are reshaped into a format suitable for input into recurrent

neural network models and then shuffled and split into training and testing subsets, typically using an

80:20 ratio.

Model training begins with a Vanilla RNN implementation as the baseline model. The architecture

includes an input layer aligned with the shape of the processed dataset, a dropout layer to mitigate

overfitting, a dense hidden layer using the ReLU activation function, and a softmax output layer for

multi-class classification. The model is compiled with a categorical cross-entropy loss function and

the Adam optimizer and is either trained on the dataset or initialized with pre-saved weights for faster

experimentation.

Subsequent models, including LSTM and GRU, are implemented following a similar architecture,

replacing the basic RNN layer with more advanced variants. LSTM is employed to better capture

long-term dependencies in sequential data, while GRU offers a simplified yet efficient alternative to

LSTM with fewer parameters and comparable performance. Both models use checkpointing to save

weights during training and allow for easy reloading in future sessions. Once training is complete, all

models are evaluated on the test dataset. Predictions are generated and compared against true labels to

compute key performance metrics such as accuracy, precision, recall, and F1-score. Confusion

matrices are also generated and visualized using Seaborn heatmaps to illustrate model performance in

distinguishing between different attack types. These metrics are then aggregated and plotted in a

comparative bar chart to clearly show the relative performance of Vanilla RNN, LSTM, and GRU,

helping users identify the most effective architecture for detecting injection attacks.

The system also supports real-time predictions on new data. Users can upload unseen datasets, which

are preprocessed using the same TF-IDF vectorizer and reshaped for model compatibility. The pre-

trained GRU model is then used to classify each entry, and predictions are displayed in the GUI.

Throughout the entire process, the GUI provides live feedback on the system’s activities, including

dataset details, training progress, evaluation results, and prediction outputs through a scrollable text

widget. Graphs and confusion matrices are shown in pop-up windows, offering a comprehensive and

interactive user experience. The dataset used in this project is carefully structured to facilitate the

detection of API-based injection attacks, particularly SQL injection and Cross-Site Scripting (XSS). It

contains two primary columns: ‘Sentence’ and ‘Label.’ The 'Sentence' column consists of various

textual inputs representing API calls or user queries, which may contain SQL code, HTML tags, or

scripts designed to exploit system vulnerabilities. These inputs range from benign requests to

malicious payloads crafted to bypass security measures and execute unauthorized actions. Examples

of malicious entries include SQL payloads like " or pg_sleep(__TIME__) -- intended to manipulate

database queries, and XSS vectors like XSS designed to execute

JavaScript in user browsers.

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

676 | Page

The 'Label' column indicates whether each sentence is safe or malicious, typically using numerical

values: 0 for benign inputs, 1 for SQL injections, and 2 for XSS attacks. This labeling scheme

supports the classification task by serving as the ground truth for training and evaluating the model.

The dataset is intentionally diverse, capturing a wide spectrum of attack vectors to ensure the

robustness and generalization capability of the detection system. By combining clear sentence

representations with accurate labeling, the dataset provides a strong foundation for training deep

learning models to identify and mitigate injection attacks in real-world API environments.

 Results Description

Fig.4: Illustration of GUI interface showing data preprocessing.

The Figure 4 shows the user interface of a desktop application designed for detecting injection attacks

in APIs. The user uploads a dataset of API requests or code samples using the "Upload Injection

Dataset" button. Presents a bar chart visualizing the distribution of different attack types and normal

instances in the loaded dataset. This provides an overview of the dataset's composition.

Fig.5: Illustration of GUI interface showing data splitting.

The Figure 5 describes the data splitting process, a crucial step in machine learning model

development. Let's break down what it means: This clearly indicates that the data has been divided

into two sets: a training set and a testing set. This is standard practice to evaluate how well a machine

learning model generalizes to unseen data.

In this implementation, the dataset is divided into two subsets to facilitate effective model training and

evaluation. A total of 80% of the dataset, comprising 37,957 data samples, is allocated for training.

This training set is used to teach the machine learning model to recognize patterns and relationships

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

677 | Page

within the data, allowing it to learn the distinctions between benign and malicious API requests. The

remaining 20% of the dataset, consisting of 9,490 samples, is reserved for testing. This testing set

plays a crucial role in evaluating the model’s performance on unseen data, helping to determine its

accuracy, robustness, and generalization capability. By assessing how well the model performs on the

test set, developers can gain insight into its effectiveness in real-world scenarios and ensure it does not

overfit to the training data

.

Fig.6: Confusion matrix obtained using RNN model.

displays the performance evaluation of a machine learning model, specifically a "Vanilla RNN"

(Recurrent Neural Network), likely used for a classification task. Let's break down the information

presented:

The performance of the Vanilla RNN model is evaluated using standard classification metrics and a

confusion matrix. The model achieved an impressive overall accuracy of 95.35%, indicating that it

correctly classified approximately 95.35% of all input instances in the dataset. The precision of the

model stands at 97.17%, reflecting its ability to make highly accurate predictions, particularly for the

"Normal" class—meaning that when the model predicts an instance as "Normal," it is correct in the

majority of cases. The recall value is 93.59%, which shows the model’s effectiveness in identifying

actual instances of each class, particularly its capability to recognize most of the "Normal" inputs. The

F1-score, a balanced metric that combines both precision and recall, is 95.14%, signifying strong

overall performance, especially in scenarios with imbalanced class distributions.

The confusion matrix further breaks down the model’s predictive performance by showing how many

instances of each true class were correctly or incorrectly classified. The matrix is structured with

actual classes represented along the rows and predicted classes along the columns. The diagonal

cells—representing correct classifications—highlight that the model correctly identified 5,778

instances of "Normal," 1,900 instances of "SQL Injection," and 1,371 instances of "XML/JSON

Injection." These diagonal values demonstrate the model's strong classification ability. However, the

off-diagonal cells reveal some misclassifications. For instance, 399 instances of "SQL Injection" were

incorrectly labeled as "Normal," and 11 "Normal" instances were misclassified as "SQL Injection."

These errors, though relatively minimal, indicate areas where the model could be further fine-tuned to

enhance its discrimination between closely related or overlapping input patterns. Overall, the

performance metrics and confusion matrix collectively validate the Vanilla RNN model’s robustness

in detecting injection attacks while also providing insight into specific areas for improvement.

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

678 | Page

Fig.7: Confusion matrix obtained using GRU model

displays the performance evaluation of a machine learning model, specifically a "GRU" (Gated

Recurrent Unit), likely used for a classification task. Let's break down the information presented:

The performance of the GRU-based RNN model demonstrates a slight but meaningful improvement

over the Vanilla RNN, showcasing its effectiveness in detecting injection attacks in API requests. The

GRU model achieved an accuracy of 95.65%, indicating that it correctly classified approximately

95.65% of all instances in the dataset. This marks a small but notable increase in performance

compared to the Vanilla RNN. The precision of the GRU model is 97.50%, reflecting a high level of

confidence in its predictions—when the model assigns a class label, it is highly likely to be correct.

The recall value of 94.02% indicates the model’s strong ability to correctly identify a majority of

actual class instances, which is crucial in a security context where missing a malicious input can have

serious consequences. The F1-score, which balances both precision and recall, stands at 95.49%,

slightly higher than the Vanilla RNN’s score, suggesting that the GRU model offers better overall

classification reliability.

The confusion matrix for the GRU model provides a detailed view of its predictive accuracy across

specific classes. Along the diagonal, where correct classifications are recorded, the model correctly

identified 5,783 instances of "Normal" API requests, 1,916 instances of "SQL Injection," and 1,378

instances of "XML/JSON Injection." These results indicate the model’s strong capability to

distinguish between benign and malicious traffic. However, the matrix also highlights several

misclassifications. Notably, 381 instances of "SQL Injection" were incorrectly labeled as "Normal,"

which could pose a risk in a real-world scenario. Additionally, 10 "Normal" requests were

misclassified as "SQL Injection," and 14 "XML/JSON Injection" instances were mislabeled as

"Normal." Other minor errors include 2 "SQL Injection" samples predicted as "XML/JSON Injection"

and 6 "Normal" instances mistakenly classified as "XML/JSON Injection." Despite these

misclassifications, the GRU model demonstrates improved precision and recall over the Vanilla RNN,

making it a more reliable and robust choice for detecting injection attacks in API environments.

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

679 | Page

Fig.8: Illustration of GUI interface showing predicted outcomes.

The Figure 8 displays the results of an injection attack detection system on various test data inputs.

The system analyzes each input, attempting to identify if it contains a potential injection attack and, if

so, the type of attack. The "Predicted Injection" column shows the model's classification for each

"Test Data" entry. A variety of inputs are tested, including script injections, form manipulations, SQL

injection attempts, and others containing HTML elements or JavaScript code. The model classifies the

inputs as either "Normal" (no attack detected), "SQL Injection," or "XML/JSON Injection," correctly

identifying several SQL and XML/JSON injection attempts while also classifying benign inputs as

"Normal." However, some potentially malicious inputs, like those with script tags or JavaScript alerts,

are also classified as "Normal" or "XML/JSON Injection" when they might represent other types of

attacks (e.g., Cross-Site Scripting - XSS), indicating potential areas for improvement in the model's

detection capabilities.

5. CONCLUSION

The implementation of a Gated Recurrent Unit (GRU)-based model for detecting injection attacks in

APIs marks a significant advancement in cybersecurity. By leveraging the GRU's ability to capture

sequential dependencies, the model effectively identifies complex patterns associated with SQL

injection and Cross-Site Scripting (XSS) attacks. A comprehensive dataset comprising both malicious

and benign API requests enabled robust training and evaluation, resulting in a model capable of

accurately distinguishing between normal and anomalous behaviors. This approach addresses the

limitations of traditional detection methods by providing a more adaptive and intelligent solution to

evolving cyber threats. The success of this model highlights the potential of integrating advanced deep

learning techniques into cybersecurity frameworks, thereby enhancing the resilience of API-driven

applications against sophisticated injection attacks.

REFERENCES

[1]. Han, S.; Xie, M.; Chen, H.-H.; Ling, Y. Intrusion Detection in Cyber-Physical Systems:

Techniques and Challenges. IEEE Syst. J. 2014, 8, 1049–1059. [Google Scholar] [CrossRef]

[2]. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A Detailed Investigation and Analysis of

using Machine Learning Techniques for Intrusion Detection. IEEE Commun. Surv.

Tutor. 2018, 21, 686–728. [Google Scholar] [CrossRef]

Ai Driven Detection Of Injection Attacks In Api’s Using Bidirectional Recurrent Neural Networks

680 | Page

[3]. Charles, M.J.; Pfleeger, P.; Pfleeger, S.L. Security in Computing, 5th ed.; Springer:

Berlin/Heidelberg, Germany, 2004. [Google Scholar]

[4]. Son, S.; McKinley, K.S.; Shmatikov, V. Diglossia: Detecting code injection attacks with

precision and efficiency. Proc. ACM Conf. Comput. Commun. Secur. 2013, 2, 1181–1191.

[Google Scholar] [CrossRef]

[5]. Yan, R.; Xiao, X.; Hu, G.; Peng, S.; Jiang, Y. New deep learning method to detect code

injection attacks on hybrid applications. J. Syst. Softw. 2018, 137, 67–77. [Google Scholar]

[CrossRef]

[6]. Vähäkainu, P.; Lehto, M. Artificial intelligence in the cyber security environment. In

Proceedings of the 14th International Conference on Cyber Warfare and Security, ICCWS

2019, Stellenbosch, South Africa, 28 February–1 March 2019; pp. 431–440. [Google Scholar]

[7]. Satapathy, S.C.; Govardhan, A.; Raju, K.S.; Mandal, J.K. SQL Injection Detection and

Correction Using Machine Learning Techniques. Adv. Intell. Syst. Comput. 2015, 337, 435–

442. [Google Scholar] [CrossRef]

[8]. Marashdeh, Z.; Suwais, K.; Alia, M. A Survey on SQL Injection Attacks: Detection and

Challenges. In Proceedings of the 2021 International Conference on Information Technology

(ICIT), Amman, Jordan, 14–15 July 2021; pp. 957–962. [Google Scholar] [CrossRef]

[9]. Faker, S.A.; Muslim, M.A.; Dachlan, H.S. A systematic literature review on sql injection

attacks techniques and common exploited vulnerabilities. Int. J. Comput. Eng. Inf.

Technol. 2017, 9, 284–291. [Google Scholar]

[10]. Qiu, S.; Liu, Q.; Zhou, S.; Wu, C. Review of artificial intelligence adversarial attack and

defense technologies. Appl. Sci. 2019, 9, 909. [Google Scholar] [CrossRef]

[11]. Martins, N.; Cruz, J.M.; Cruz, T.; Abreu, P.H. Adversarial Machine Learning Applied to

Intrusion and Malware Scenarios: A Systematic Review. IEEE Access 2020, 8, 35403–35419.

[Google Scholar] [CrossRef]

[12]. Muslihi, M.T.; Alghazzawi, D. Detecting SQL Injection on Web Application Using Deep

Learning Techniques: A Systematic Literature Review. In Proceedings of the 2020 Third

International Conference on Vocational Education and Electrical Engineering (ICVEE),

Surabaya, Indonesia, 3–4 October 2020. [Google Scholar] [CrossRef]

[13]. Aliero, M.S.; Qureshi, K.N.; Pasha, M.F.; Ghani, I.; Yauri, R.A. Systematic Review Analysis

with SQLIA Detection and Prevention Approaches. Wirel. Pers. Commun. 2020, 112, 2297–

2333. [Google Scholar] [CrossRef]

[14]. Hasan, M.; Tarique, M. Detection of SQL Injection Attacks: A Machine Learning Approach.

In Proceedings of the 2019 International Conference on Electrical and Computing

Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 19–21

November 2019. [Google Scholar]

[15]. Gao, H.; Zhu, J.; Liu, L.; Xu, J.; Wu, Y.; Liu, A. Detecting SQL Injection Attacks Using

Grammar Pattern Recognition and Access Behavior Mining. In Proceedings of the 2019 IEEE

International Conference on Energy Internet (ICEI), Nanjing, China, 27–31 May 2019.

[Google Scholar] [CrossRef]

[16]. Gandhi, N. A CNN-BiLSTM based Approach for Detection of SQL Injection Attacks. In

Proceedings of the 2021 International Conference on Computational Intelligence and

Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 17–18 March 2021; pp. 378–

383

