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ABSTRACT: Map Reduce is a popular parallel computing paradigm for large-scale data processing in 

clusters and data centers. A Map Reduce workload generally contains a set of jobs, each of which 

consists of multiple map tasks followed by multiple reduce tasks. Due to 1) that map tasks can only run 

in map slots and reduce tasks can only run in reduce slots, and 2) the general execution constraints 

that map tasks are executed before reduce tasks, different job execution orders and map/reduce slot 

configurations for a MapReduce workload have significantly different performance and system 

utilization. This paper proposes two classes of algorithms to minimize the makespan and the total 

completion time for an offline MapReduce workload. Our first class of algorithms focuses on the job 

ordering optimization for a MapReduce workload under a given map/reduce slot configuration. In 

contrast, our second class of algorithms considers the scenario that we can perform optimization for 

map/reduce slot configuration for a Map Reduce workload. We perform simulations as well as 

experiments on Amazon EC2 and show that our proposed algorithms produce results that are up to 15 

_ 80 percent better than currently un optimized Hadoop, leading to significant reductions in running 

time in practice. 

This is an open access article under the creative commons license 

https://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

1. INTRODUCTION 

MapReduceis a widely used computing model forlarge scale data processing in cloud computing. A 

MapReduce job consists of a set of map and reduce tasks, where reduce tasks are performed after the map 

tasks. Hadoop, an open source implementation of MapReduce, has been deployed in large clusters 

containing thousands of machines by companies such as Amazon and Facebook. In those cluster and data 

center environments, MapReduce and Hadoop are used to support batch processing for jobs submitted 

from multiple users (i.e., MapReduce workloads). Despite many research efforts devoted to improve the 

performance of a singleMapReduce job, there is relatively little attention paid to the system performance 

of MapReduce workloads. Therefore, this paper tries to improve the performance of MapReduce 

workloads. Makespan and total completion time (TCT) are two key performance metrics. 

Generally, makespan is defined as the time period since the start of the first job until the completion of the 

last job for a set of jobs. It considers the computation time of jobs and is often used to measure the 

performance and utilization efficiency of a system. In contrast, total completion time is referred to as the 

sum of completed time periods for all jobs since the start of the first job. It is a generalized makespan with 

queuing time (i.e., waiting time) included. We can use it to measure the satisfaction to the system from a 

single job’s perspective through dividing the total completion time by the number of jobs (i.e., average 

completion time).  
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Therefore, in this paper, we aim to optimize these two metrics. We consider the production MapReduce 

workloads whose jobs run periodically for processing new data. The default FIFO scheduler is often 

adopted in order to minimize the overall execution time. The analysis is generally performed offline to 

optimize the execution for such production workloads. There are a surge amount of optimization 

approaches on that.  

 

Objectives of the study 

1) MapReduce is a popular parallel computing paradigm for large-scale data processing in clusters and 

data centers.  

2) A MapReduce workload generally contains a set of jobs, each of which consists of multiple map 

tasks followed by multiple reduce tasks.  

3) This study proposes two classes of algorithms to minimize the makespan and the total completion 

time for an offline MapReduce workload.  

4) Our first class of algorithms focuses on the job ordering optimization for a MapReduce workload 

under a given map/reduce slot configuration. In contrast, our second class of algorithms considers 

the scenario that we can perform optimization for map/reduce slot configuration for a MapReduce 

workload.  

5) We perform simulations as well as experiments on Amazon EC2 and show that our proposed 

algorithms produce results that are up to 15  80 percent better than currently unoptimizedHadoop, 

leading to significant reductions in running time in practice. 

 

2. LITERATURE REVIEW 

PIXIDIA: Optimizing Data Parallel Jobs in Wide-Area Data Analytics 

In this paper, we present PIXIDA, a scheduler that aims to minimize data movement across resource 

constrained links. To achieve this, we introduce a new abstraction called SILO, which is key to modeling 

PIXIDA’s scheduling goals as a graph partitioning problem. 

A Dynamic Map Reduce Scheduler for Heterogeneous Workloads 

In this paper, we give a new view of the Map Reduce model, and classify the Map Reduce workloads into 

three categories based on their CPU and I/O utilization. With workload classification, we design a new 

dynamic Map Reduce workload predict mechanism, MR-Predict, which detects the workload type on the 

fly. We propose a Triple-Queue Scheduler based on the MR-Predict mechanism. 

 

3. ANALYSIS 

Existing system 

A MapReduce job consists of a set of map and reduce tasks, where reduce tasks are performed after the 

map tasks.Hadoop, an open source implementation of MapReduce, has been deployed in large clusters 

containing thousands ofmachines by companies such as Amazon and Facebook. In those cluster and data 

center environments, MapReduce and Hadoop are used to support batch processing for jobs submitted 

from multiple users (i.e., MapReduce workloads).Despite many research efforts devoted to improve the 

performance of a single MapReduce job, there is relatively little attention paid to the system performance 

of MapReduce workloads. Therefore, this paper tries to improve the performance of MapReduce 

workloads. 
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Proposed system 

In this paper, we target at one subset of production MapReduce workloads that consist of a set of 

independent jobs (e.g., each of jobs processes distinct data sets with no dependency between each other) 

with different approaches. For dependent jobs (i.e., MapReduce workflow), one MapReduce can only 

start only when its previous dependent jobs finish the computation subject to the input-output data 

dependency. In contrast, for independent jobs, there is an overlap computation between two jobs, i.e., 

when the current job completes its map-phase computation and starts its reduce-phase computation, the 

next job can begin to perform its map-phase computation in a pipeline processing mode by possessing the 

released map slots from its previous job. 

 

External Interface Requirements 

User Interface 

The user interface of this system is a user friendly Java Graphical User Interface. 

Hardware Interfaces 

The interaction between the user and the console is achieved through Java capabilities.  

Software Interfaces 

The required software is JAVA1.6. 

Operating Environment 

Windows XP, Linux. 

HARDWARE REQUIREMENTS: 

 Processor - Pentium –IV 

 Speed  -     1.1 Ghz 

 RAM  -     256 MB(min) 

 Hard Disk -    20 GB 

 Key Board -     Standard Windows Keyboard 

 Mouse  -     Two or Three Button Mouse 

 Monitor  -     SVGA 

SOFTWARE REQUIREMENTS: 

 Operating System  : Windows XP 

 Programming Language : Java 

 Software  : jdk and Cygwin 

4. SOFTWARE USED 

Java 

Initially the language was called as “oak” but it was renamed as “java” in 1995.The primary motivation of 

this language was the need for a platform-independent (i.e. architecture neutral) language that could be 

used to create software to be embedded in various consumer electronic devices. 

 Java is a programmer’s language 

 Java is cohesive and consistent 

 Except for those constraint imposed by the Internet environment. Java gives the programmer, full 

control 

Finally Java is to Internet Programming where c was to System Programming. 
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Importance of Java to the Internet 

Java has had a profound effect on the Internet. This is because; java expands the Universe of objects that 

can move about freely in Cyberspace. In a network, two categories of objects are transmitted between the 

server and the personal computer. They are passive information and Dynamic active programs in the areas 

of Security and probability. But Java addresses these concerns and by doing so, has opened the door to an 

exciting new form of program called the Applet. 

Applications and applets 

An application is a program that runs on our Computer under the operating system of that computer. It is 

more or less like one creating using C or C++ .Java’s ability to create Applets makes it important. An 

Applet I san application, designed to be transmitted over the Internet and executed by a Java-compatible 

web browser. An applet I actually a tiny Java program, dynamically downloaded across the network, just 

like an image. But the difference is, it is an intelligent program, not just a media file. It can be react to the 

user input and dynamically change. 

5. RESULTS AND ANALYSIS 

Home screen 

 
Run unoptimized (by using normal map reducer concept). Here we are running 3 types of jobs (word 

count, sorting and creating inverted index) 

 
(in the above, the total time taken by mapper and reducer to process the job is represented as processing 

time in ms and their individual timings in ns) 

Run MK_JR: 
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As per this algorithm, we order jobs in J based on the following principles: 

Partition jobs set J into two disjoint sub-sets JobA and JobB: 

JobA = when T(m) <= T(r) 

JobB = when T(m) > T(r) 

Run MK_TCT_JR:This algorithm is similar to MK_JR but the jobs will be arranged on the time 

threshold: 

 

 
Run MK_SF_JR: 

Here it shows how many slots required processes the given jobs: 

 
Run MK_TCT_SF_JR: 

Here it is similar to above but time threshold is there 
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The processing time comparison chart: 

 
6. CONCLUSIONS 

This paper focuses on the job ordering and map/reduce slot configuration issues for MapReduce 

production workloads that run periodically in a data warehouse, where the average execution time of 

map/reduce tasks for a MapReduce job can be profiled from the history run, under the FIFO scheduling in 

a Hadoop cluster. Two performance metrics are considered, i.e., makespan and total completion time. We 

first focus on the makespan. We propose job ordering optimization algorithm and map/reduce slot 

configuration optimization algorithm. We observe that the total completion time can be poor subject to 

getting the optimal makespan, therefore, we further propose a new greedy job ordering algorithm and a 

map/reduce slot configuration algorithm to minimize the makespanand total completion time together. 

The theoretical analysis is also given for our proposed heuristic algorithms, including approximation 

ratio, upper and lower bounds on makespan. Finally, we conduct extensive experiments to validate the 

effectiveness of our proposed algorithms and their theoretical results. 
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